简介:本文给出了重新启动的LGMRES方法的一种代价更小的实现方式。这种做法基于消除以下减慢收敛速度的现象:重新启动的simplerGMRES的每次循环结束时得到的残向量经常交替方向,与重新启动的GMRES的情形类似。这种新的变形的方法的优点是它比重新启动的LGMRES所需要的计算量要少,大量的例子表明该方法计算速度更快。
简介:设E是任意实Banach空间,T:E→E是Lipschitz的强增生算子.证明了,带误差的Ishikawa迭代序列强收敛到方程Tx=f的唯一解.特别地,还给出了Ishikawa迭代序列的收敛率估计.另一方面,一个相关结果,讨论了E中lipschitz强伪压缩映象的不动点的带误差的Ishikawa迭代序列的收敛性.
简介:设X是实Banach空间,H:X→X是Lipschitz算子,T:X→X是一致连续的且值域有界,H+T是强增生的,则Mann和Ishikawa迭代程序几乎稳定地强收敛到方程Hx+Tx=f的唯一解.
简介:给出并证明了MengerPN-空间中一类具有(Φ,△)-型概率收缩序列的非线性集值及单值算子方程序列解的存在性与唯一性定理,推广了张石生等人的结果,并利用这些定理获得了几个不动点定理。
简介:在实自反Banach空间中,证明了强增生型变分包含解的具有误差项的Ishikawa迭代程序的一些新的收敛性和稳定性定理.所得结果改进、推广和发展了一些作者早期与最近的相关结果.