简介:讨论一维空间中超前型与滞后型交替的脉冲微分系统.首先考虑具常系数的脉冲微分系统平凡解稳定的充分条件;其次研究了具变系数的脉冲微分系统的振动性,并给出了其解的表示式.
简介:讨论脉冲时滞差分方程xn+1-xn+pnxn-2=0,n≥0,n≠nkxnk+1-xnk=bkxnk,k=1,2,3…给出了方程所有解振动的充分条件。
简介:利用锥上的Krasnoselskii不动点定理,证明了二阶非线性具特征值问题的脉冲微分方程正解的存在性.
简介:研究了一类在污染环境下的具有脉冲输入和资源循环的Monod型恒化器模型,利用Floquet定理和脉冲微分方程解的比较定理,我们得出了系统的微生物灭绝周期解全局渐近稳定以及系统持久的充分条件.
简介:通过引入一个新的锥,利用不动点指数相关理论,研究了一类一阶脉冲周期边值问题,讨论了其正解的存在性.
简介:主要讨论一类超前型与滞后型交替的脉冲微分系统.首先给出具常系数的脉冲微分系统解存在的充分条件以及解唯一的表达形式;对于变系数的微分系统也作了相应的讨论.
简介:研究一类具有脉冲预防接种和时滞的乙肝模型,考虑了疾病的垂直传染,获得了再生数R1,R2,证明了R1<1时,系统存在无病周期解,且是全局渐近稳定的,当R2>1时,系统的疾病将持续并发展为地方病.
简介:本文研究了一类n阶线性脉冲时滞微分方程解的振动性。通过比较原理,得到了其振动的充分条件,所得到的结果推广了一些已有的结果。
简介:通过定义合适的线性空间以及范数,给出恰当的算子,在非线性项和脉冲值满足一定的条件下,分别利用压缩映像原理和krasnoselskii不动点定理,研究了分数阶脉冲微分方程边值问题解的存在性和唯一性。
简介:给出了具有时滞和时超的一阶非线性脉冲微分方程所有解为振动的充分条件,所得结论包含了线性情形作为其推论.
简介:利用临界点理论和变分方法,研究了一类带有脉冲效应的二阶周期边值问题,在较弱的条件下,得到了非平凡解的存在性.所得结论推广和改进了近期这方面的一些结果.
简介:利用混合单调凝聚算子的耦合不动点定理,给出了二阶混合单调型脉冲微分方程的初值问题的解的存在唯一性及迭代逼近定理.
简介:利用Sadovskii不动点定理研究了一类脉冲中立型泛函微分方程,证明了适度解的存在性.最后,给出了上述问题在偏微分方程方面的一个应用.
简介:本文首先建立了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统.然后通过应用Gaines和Mawhin叠合度定理,研究得到了具有变时滞和分布时滞的Lotka-Volterra两种群脉冲合作系统正周期解存在性的充分条件.
简介:应用上下解方法和单调迭代技术研究了带有上确界的一阶非线性脉冲微分方程无穷边值问题,并获得了其极值解的存在性结果.
简介:讨论了带有脉冲免疫的肝病模型,并在传染类中引入了传染年龄,且传染类的恢复率是依赖这个年龄的,最后给出了元病周期解全局渐近稳定性的条件.
简介:考虑了一类食饵在斑块环境中扩散具有脉冲和时滞的捕食系统,通过灵活地运用Gaines和Mawhin的连续拓扑度定理,获得了一系列易验证的正周期解存在的充分条件.
简介:研究一类脉冲中立型时滞抛物方程组解的振动性,得到了该类方程组在两类不同边界条件下所有解振动的若干充分条件。
简介:研究一类脉冲时滞抛物型偏微分方程组解的振动性,利用一阶脉冲时滞微分不等式获得了该类方程组在两类不同边值条件下所有解振动的若干充分条件.所得结果充分反映了脉冲和时滞在振动中的影响作用.
简介:运用锥上的不动点定理,研究一类脉冲时滞微分方程的概周期解,得到了保证系统存在概周期解的一组充分条件。
一维交替型脉冲微分系统
脉冲时滞差分方程的振动性
脉冲微分方程正解的存在性
具有脉冲输入和资源循环的恒化器模型
一阶脉冲周期边值问题正解的存在性
一类交替型脉冲微分系统的解
带脉冲接种和垂直传染的时滞乙肝模型
高阶脉冲时滞微分方程解的振动准则
分数阶脉冲微分方程边值问题解的存在性
一阶非线性具偏差变元脉冲微分方程
二阶脉冲周期边值问题非平凡解的存在性
二阶混合单调型脉冲微分方程的初值问题
非局部条件下的脉冲中立型泛函微分方程
具有混合时滞的脉冲合作系统正周期解的存在性
带有“上确界”的非线性脉冲微分方程无穷边值问题
带有脉冲免疫和传染年龄的肝病模型的全局渐近稳定性
带有扩散、脉冲和时滞的非自治捕食系统的正周期解
一类脉冲中立型时滞抛物方程组的振动性
脉冲时滞抛物型偏微分方程组解的振动性
一类时滞脉冲微分方程的概周期解的存在性