简介:ASYMPTOTICBEHAVIOROFOPERATORSOFPROBABILISTICTYPEINL_pSPACES¥CHENWENZHONG;CUIZHENLU(DepartmentofMathematicsXiamenUniversity,Xi?..
简介:本文主要讨论了高阶Kirchhoff方程的指数吸引子,对于低阶的Kirchhoff方程的指数吸引子,有着广泛的研究,本文在低阶类型方程研究的基础上,研究了高阶Kirchhoff类型方程的指数吸引子.首先,对于高阶Kirchhoff方程中的非线性项,进行了合理的假设,运用了广义Gronwall不等式,Young不等和Poincare不等式,结合Sobolev空间理论,证明了该方程的动力系统的Lipschitz连续性,离散的挤压性质,然后获得了指数吸引子.
简介:Inthispaper,theinverseeigenvalueproblemofHermitiangeneralizedanti-Hamiltonianmatricesandrelevantoptimalapproximateproblemareconsidered.Thenecessaryandsufficientconditionsofthesolvabilityforinverseeigenvalueproblemandanexpressionofthegeneralsolutionoftheproblemarederived.Thesolutionoftherelevantoptimalapproximateproblemisgiven.
简介:考虑ATM交易过程当中产生的一系列参数,如交易量、交易成功率和响应时间等,对交易状态特征进行分析并建立了异常检测模型。针对成功率与响应时间2个参数,利用聚类算法将数据点划分为正常点、疑似异常点、异常点3大类。对于疑似的异常点,再根据其时间序列周围点的分布情况确定是否确实为异常点;对于交易量参数,首先通过LOF局部离群因子对离群点进行识别,再结合交易量随时间的移动均线及标准差加以辅助筛选,得到初步的疑似异常点,进一步通过与不同天同一时刻数据进行比较,最终确定是否为异常点。根据上述模型,本文将异常情况划分为3个预警等级,并对重大故障情况进行预测。
简介:研究一类特征值问题及其应用.首先应用常微分方程理论讨论一类边值问题非平凡解的存在唯一性,并将该研究结果应用到一类弹性系统的镇定问题.得到了系统渐近稳定的充分条件.
简介:利用锥上的不动点定理证明了二阶Nuemann特征值问题-u″+Mu=λa(t)f(u(t))m0≤t≤1u′(0)=u′(1)=0是的正解存在性结果.