简介:左R-模M称为Eω-内射模,如果对环R中任意的ω阶Euclid理想I来说,任何R-模同态能够拓展为R-模同态。左R-模M称为Eω-投射模,若对环R中任意的ω阶Euclid理想I和任何R-模同态f∈HomR(M,R/I),存在R-模同态g∈HomR(M,R)使得f=πg,其中π是自然同态。本文证明P和Q均是Eω-投射模当且仅当PQ是Eω-投射模。进而,又证明了每一个左R-模是Eω-投射的当且仅当每一个左R-模是Eω-内射。
简介:聚类分析是研究“物以类聚”的一种现代多元统计分析方法,而且聚类分析方法发展很快,并在经济、管理、地质勘探、天气预报、生物分类、考古学、医学、心理学以及制定国家标准和区域标准等许多方面都取得了很有成效的应用。本文首先重点学习了聚类分析的相关知识,通过对具体实例数据用SPSS软件进行不同种系统聚类法的应用分类,并利用阈值T、散点图和使用统计量确定适合的类的个数,把不同种系统聚类法进行研究和比较。最后得出结论:“给定一个阈值T”这种方法的主观性较强;“观测散点图”这个方法较为直观,效率也许会好于正规聚类方法;“使用统计量”往往更明确。在聚类方法的效果方面,类平均法和离差平方和法的聚类效果相对较好。
简介:广义Nekrasov矩阵在经济数学、控制理论、数值代数等诸多领域中都有着重要的作用.本文研究了广义Nekrasov矩阵的判定问题.首先从矩阵的元素出发,利用不等式放缩的方法,构造正对角矩阵因子,获得了广义Nekrasov矩阵几种新的判别方法,推广了已有的一些结果.最后用数值算例说明了所得结果的有效性.