简介:多尺度几何分析中的Contourlet变换可以实现灵活的多分辨、多方向图像表示,但是由于不具有平移不变性,在图像去噪中容易产生伪吉布斯现象,本文应用具有平移不变性且能有效表示图像纹理信息的平稳Contourlet变换,提出了软硬阈值结合的去噪法.试验结果表明该方法有效提高去噪声后图像的PSNR,有效保存图像纹理信息以及更好的视觉效果.
简介:本文对单位圆内的代数体函数w(z)定义了Borel点和Nevanlinna点,证明了Nevanlinna点的存在性,并在w(z)的级为有穷时,亦证明了Borel点的存在性。
简介:提出了点集Bézier曲线的概念,给出了点集Bézier曲线的性质及细分算法.按照点集算术的定义,当点集是长方形闭域或圆盘时,点集Bézier曲线就是区间Bézier曲线或圆盘Bézier曲线,因此,点集Bézier曲线是对区间Bézier曲线和圆盘Bézier曲线的推广.
简介:给出赋Orlicz范数的Musielak-Orlicz函数空间中光滑点、光滑性、强(很)光滑点和强(很)光滑性的充分必要条件.
简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构。