学科分类
/ 1
8 个结果
  • 简介:八年级上册第一章学习《勾股定理》,勾股定理有一个重要应用就是求解立体图形中两点之间的最短路径。解立体图形上两点间最短路径问题的步骤:1.将立体图形中与两点相关的面展开,转化为平面几何图形;2.根据“平面上两点之间,线段最短”确定最短路线;3.以最短路线为边构造直角三角形,利用勾股定理来解决.长方体表面的最短路径问题的解法与此相同.下面举例说明如何快速求解长方体表面的最短路径问题.

  • 标签: 最短路径问题 快速求解 体表面 平面几何图形 勾股定理 立体图形
  • 简介:参加珠脑速算技术提高师资班学习的心得体会(上)张凡雷笔者在中专从事珠算教学多年,多次组队参加珠算比赛,可成绩越来越不理想。近年来,珠脑速算在珠算领域占有相当重要的位置。有人云:珠算已发展到第三代,即第一代为传统算法,第二代为简捷算法,第三代为珠脑速算...

  • 标签: 心得体会 教学与训练 拨珠 教练体系 珠算教学 基础知识
  • 简介:对于圆锥型和棱锥型Hamiltonian的Eikonal型方程,本文给出了一种几何方法,得出其初值问题解的表达式并且说明由此式给出的解为原初值问题的粘性解.首先用一个凸函数序列逼近Eikonal型方程中的Hamiltonian,再由Hopf-Lax公式给出方程序列的粘性解,最后证明了该粘性解序列会收敛到Eikonal方程的粘性解.

  • 标签: HAMILTON-JACOBI方程 Eikonal型方程 Hopf-Lax公式
  • 简介:鉴于分块矩阵的群逆在许多领域都有重要的应用,根据矩阵投影性质和初等分解的方法给出了分块矩阵M=(AX+YBABD)在一些新的条件下群逆的存在性理论,然后根据群逆存在性的理论给出群逆的具体表式.最后通过数值例子验证了结果的正确性.

  • 标签: 分块矩阵 群逆 初等分解
  • 简介:语言是思维的载体,它既反映着学生的思维,又影响着学生思维的发展.教学实践证明,加强学生的语言表达能力训练可以提高学生思维的逻辑性、灵活性、准确性,从而达到提高学生综合素质的目的.但小学数学课堂教学中,学生语言表达能力的培养很容易被忽视,经常会出现学生会做不会说,爱说说不出,教师代替学生说的现象,以至于老师说得很累,学生听得很无趣.要解决这一矛盾,就必须从一年级开始,根据教材特点,有目的、有计划、多形式地对学生的数学语言表达能力进行训练,让学生多说,使学生真正成为课堂的“主人”.低年级学生正处于语言发展的最佳时期,如果不重视语言训练,学生的思维将难以外化.在这个特殊时期就需要教师对学生进行数学语言的强化训练.

  • 标签: 数学语言表达能力 学生综合素质 培养 小学 数学课堂教学 能力训练