简介:本文刻划交换半群的强半格上的最小半格同余,并证明由此得到的商半群为对应的每个交换半群的商半群的强半格。
简介:在q(≥2)一致光滑的实Banach空间中,研究了一类非Lipschitz,非值域有界的φ-强伪压缩映射和φ-强增生映射的Ishikawa迭代收敛问题,所得结果扩展了该领域目前所有的相关结果,因而在目前更具有一般性和广泛性.
简介:利用自反Banach空间中弱紧算子的因子分解技巧,对于一类非齐次项具有连续Lipschitz扰动的柯西问题,当其齐次项算子生成强连续算子半群且具有紧豫解式限制时,证明了方程强解的存在性.
简介:在自反、严格凸、光滑的Banach空间中,设计了一种修正的混合投影迭代算法用来构造平衡问题与拟φ-渐近非扩张映像的不动点问题的公共元,并利用广义投影算子和K-K性质证明了此迭代算法生成的序列强收敛于这两个问题的公共元.所得结果是近期相关结果的改进和推广.
简介:本文讨论了强G-半预不变凸函数,它是强预不变凸函数与强G-预不变凸函数的真推广.首先,举例说明了强G-半预不变凸函数的存在性;然后,借助集合稠密性原理,获得了强G-半预不变凸函数的一个充要条件;最后,得到强G-半预不变凸函数在一定假设(在闭半连通集上)下的下确界就是函数在此集合上的最小值,所得结果推广并改进了相应文献中的结果.