简介:今天是大数据的时代,更是一个要求精准的时代,在工作和生活中总会遇到类似在线影片租赁公司Netflix对若干电影进行人气排名的问题.他们试图通过回收影迷打分的问卷调查来解决,可惜许多影迷并没有观看全部电影,因此如何通过这份不完整的问卷调查数据来对电影人气进行排序,就引起了人们的高度关注,其关键点在于矩阵缺失元素的填充.近几年来,数学家们发明了一种崭新的方法——矩阵填充方法,建立数学模型,较好地解决了该问题.类似问题在机器学习、图像和视频处理等领域也会遇到,涉及面较广.本文基于矩阵填充方法,处理2017年12月28日教育部发布的第4轮学科评估数据,建立核范数最小化模型,选取SVT算法,对参评的所有490所高校未参评或未设置学科的得分进行预测,进而计算高校的学科平均得分,得到高校综合排名.同时,由填充后的学科得分也能回答一所高校如果想扩大学科数量,下一个最应该设置的学科是哪一个,从而达到学科优化布局的效果.
简介:Sargent改进的Powell方法是曲线拟合中的一种重要方法。本文利用这种方法针对蕴藻浜特大桥沉降中的实测数据给出了五种模型下的沉降预测,这些模型包括双曲线斜率倒数模型、VanderVeen指数模型、宇都一马指数模型、龚帕兹模型、以及波松曲线模型,并发现这种方法对波松旋回模型和灰色系统模型适用性不强。
简介:EfronandAmaripresentedaRiemanniangeometricframeworkforqurvedexponentialfamiliesandstudiedtheinformationlossandthevarianceoftheestimateusingthisframilies.InthispapproposearelativelyrumplegeometricframeworkinEuclideanspace.Basedonthisnewframework,westudyeonfidenceregiodsforcurvedexponentialfamilieswhichhavenotbeenstudiedbyEfronandAmari.TheresultsobtainedbyHamiltonetal.areextendedtocurvedexponentialfamilies.