简介:语言是思维的载体,它既反映着学生的思维,又影响着学生思维的发展.教学实践证明,加强学生的语言表达能力训练可以提高学生思维的逻辑性、灵活性、准确性,从而达到提高学生综合素质的目的.但小学数学课堂教学中,学生语言表达能力的培养很容易被忽视,经常会出现学生会做不会说,爱说说不出,教师代替学生说的现象,以至于老师说得很累,学生听得很无趣.要解决这一矛盾,就必须从一年级开始,根据教材特点,有目的、有计划、多形式地对学生的数学语言表达能力进行训练,让学生多说,使学生真正成为课堂的“主人”.低年级学生正处于语言发展的最佳时期,如果不重视语言训练,学生的思维将难以外化.在这个特殊时期就需要教师对学生进行数学语言的强化训练.
简介:证明了一类整系数齐次线性递归数列,当项数n是素数时,第n项与第1项的n次方模n同余.Fermat小定理,以及与Fibonacci数列、Perrin数列有关的一些定理,都可以看作是这一定理的推论.
简介:利用自反Banach空间中弱紧算子的因子分解技巧,对于一类非齐次项具有连续Lipschitz扰动的柯西问题,当其齐次项算子生成强连续算子半群且具有紧豫解式限制时,证明了方程强解的存在性.
简介:给出了求一类高阶非齐次线性微分方程(组)特解的矩阵解法.即由对应齐次微分方程(组)的n个特解以及非齐次微分方程(组)的自由项构成某线性方程组的增广矩阵,并对该增广矩阵进行初等行变,换,即可求得非齐次微分方程(组)特解的一种简便方法.
简介:描述玻色-爱因斯坦凝聚(BEC)的有效而方便的方程是著名的Gross-Pitaevskii(GP)方程。本文在将GP方程变换为非线性薛定谔方程(NLS)的基础上,利用齐次平衡法求出了Gross-Pitaevskii(GP)方程的一系列Jacobi椭圆函数解。
简介:对于圆锥型和棱锥型Hamiltonian的Eikonal型方程,本文给出了一种几何方法,得出其初值问题解的表达式并且说明由此式给出的解为原初值问题的粘性解.首先用一个凸函数序列逼近Eikonal型方程中的Hamiltonian,再由Hopf-Lax公式给出方程序列的粘性解,最后证明了该粘性解序列会收敛到Eikonal方程的粘性解.