简介:图形复杂度是对图形复杂程度的一种量化表达,在图形分析、分类、形状分析等方面都有广泛应用。本文基于统计方法将图形复杂度定义为各向距离数列的标准差,称为各向距离标准差法。根据该方法可以计算出各种二维图形的复杂度。各向距离标准差法具有旋转不变性。各向距离标准差法对常见图形的排序结果与用户调查排序结果基本一致,体现了各向距离标准差法的实用价值。此外,以番茄叶片轮廓线为例,进行叶轮廓线的复杂性分析,得到番茄叶片轮廓复杂性的统计性结论,供植物叶片相关研究参考。
简介:以Bowley博弈模型为核心,将寡头的调整速度作为企业的竞争策略,并对该模型Nash均衡点的稳定域进行分析;通过数值仿真把双寡头的策略区域分为均衡区、周期区和混沌区。研究发现双寡头博弈市场中,寡头为了获得更大的利润而不断改变自身产量策略,这是市场出现周期波动、甚至陷入混沌的根本内因.
简介:应用不动点指数理论和上下解的方法,研究了一类非线性四阶微分方程组奇异边值问题,给出了其正解存在性与无解性定理.
简介:应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.
简介:本文给出了古典方向导数的一、二阶定义,借助于平均值理论给出非光滑多目标规划的二阶充分性条件。
简介:通过引入一个新的锥,利用不动点指数相关理论,研究了一类一阶脉冲周期边值问题,讨论了其正解的存在性.
简介:利用不动点原理研究n阶RFDE边值问题解的存在性和唯—性,得到了一些新的结果。
简介:利用锥拉伸和压缩不动点定理,得到了二阶非线性三点边值问题u″(t)+a(t)u’(t)+b(t)u(t)+h(t)f(t,u,(t))=0,t∈(0,1)u(O)=βu(δη),u(1)=au(η)的正解存在性的充分条件,其中α,β∈[0,+∞),0〈η〈1
简介:通过定义合适的线性空间以及范数,给出恰当的算子,在非线性项和脉冲值满足一定的条件下,分别利用压缩映像原理和krasnoselskii不动点定理,研究了分数阶脉冲微分方程边值问题解的存在性和唯一性。
简介:在[2]中已定义了超级幻方,本文将证明只要n是个奇数(n>1),n^2阶的超级幻方就存在。
简介:根据非线性项的不同,用两个不动点定理研究一类分数阶微分方程正解的存在性及唯一性,且其解可找到迭代序列逼近.最后列举两个例子说明其结果的应用.
简介:利用锥上不动点定理讨论了二阶常微分方程组多点边值问题正解的存在性,所得结论推广了最近的一些结果.
简介:利用Z2-指标理论和临界点理论,讨论了一类四阶微分方程u(4)+au"=μu+f(t,u),0〈t〈L,u(O)=u(L)=u"(0)=u"(L)=0共振问题解的多重存在性,这里a〉0,f∈C1([0,L]×R,R),为特征值问题u(4)+au"=λu的某个特征值,其中特征值满足λ4〈0,λk〉0,k≥2.
简介:本文要讨论了二阶P—Laplaci!an方程边值问题{△(φ(Au(t-1)))+a(t),(t,u(t))=0,t∈N[1,T+1];△u(O)=0,u(T+2)=0三个正解的存在性。通过利用一个三解不动点定理,证明了当,(t,x)在满足较弱条件时该方程至少三个正解的存在性。
简介:利用临界点理论和变分方法,研究了一类带有脉冲效应的二阶周期边值问题,在较弱的条件下,得到了非平凡解的存在性.所得结论推广和改进了近期这方面的一些结果.
简介:利用e-范数和锥上的不动点定理,给出了四阶微分方程奇异边值问题两个C^2[0,1]和C^3[0,1]正解的存在性.
简介:考虑了一阶泛函差分方程Δx(n)=a(n)g(x(n))x(n)-λb(n)f(x(n-τ(n))),n∈Z正周期解的存在性.其中f,g∈C([0,∞),[0,∞)),λ为参数.运用不动点指数理论获得了上述问题正周期的存在性结果,所得结果推广了Raffoul的相关结果.
简介:利用不动点指数理论,文章讨论了二阶非线性边值问题系统正解的存在唯一性.并将所得结论应用于具体问题.
简介:利用临界点理论中的山路引理,研究一类分数阶Kirchhoff型方程在次临界增长条件下非平凡解的存在性,进一步统一和丰富了已有文献的相关结果.
简介:本文主要研究一类无穷区间上分数阶边值问题的正解.通过构造特殊的Banach空间,运用Leray-Schauder非线性抉择得到了该边值问题至少存在一个正解以及运用Leggett-Williams不动点定理得到至少存在三个正解.
二维图形复杂度计算与叶片轮廓复杂性分析
有限理性双寡头博弈模型的复杂性分析
四阶奇异边值问题正解的多重性与无解性
分数阶微分方程边值问题解的存在性
非光滑多目标规划的二阶充分性
一阶脉冲周期边值问题正解的存在性
n阶RFDE边值问题解的存在性和唯一性
二阶三点边值问题正解的存在性
分数阶脉冲微分方程边值问题解的存在性
奇数阶超级幻方
分数阶微分方程边值问题正解的存在性及唯一性
一类二阶多点边值问题正解的存在性
四阶微分方程共振问题解的多重存在性
二阶P—Laplacian问题三个正解的存在性
二阶脉冲周期边值问题非平凡解的存在性
四阶奇异边值问题两个正解的存在性
一阶泛函差分方程正周期解的存在性
二阶非线性边值系统正解存在唯一性
一类分数阶Kirchhoff型方程非平凡解的存在性
一类无穷区间上分数阶边值问题正解的存在性