学科分类
/ 4
76 个结果
  • 简介:本文就可测函数是连续函数的推广做了进一步的论述。证明了任意测集合上的连续函数都是测函数。证明过程启发人们对测函数的结构进行更好的研究并由此对鲁津定理的理解更深透.

  • 标签: 可测函数 F_σ型集
  • 简介:n为非负整数序列,若存在以该序列为度序列的图,则称n为图的,特别的,若此图是一个定向图,该序列则称为是定向图的,本文提出了一个判断序列是否为定向图的充分必要条件,并且在定理的证明过程中给出了一个在定理条件下构造所求定向图的有效算法。

  • 标签: 定向可图 度(偶)序列 定向图
  • 简介:设G是一个有限的简单连通图.D(G)表示V(G)的一个子集,它的每一个点至少有一个最大匹配不覆盖它.A(G)表示V(G)-D(G)的一个子集,它的每一个点至少和D(G)的一个点相邻.最后设C(G)=V(G)-A(G)-D(G).在这篇文章中,下面的被获得.(1)设u∈V(G).若n≥1和G是n-扩的,则(a)C(G-u)=和A(G-u)∪{u}是一个独立集,(b)G的每个完美匹配包含D(G-u)的每个分支的一个几乎完美匹配,并且它匹配A(G-u)∪{u}的所有点与D(G-u)的不同分支的点.(2)若G是2-扩的,则对于u∈V(G),A(G-u)∪{u}是G的一个最大障碍且G的最大障碍的个数是2或者是|V(G)|.(3)设X=Cay(Q,S),则对于u∈Q,(a)A(X-u)==C(G-u)和X-u是一个因子临界图,或者(b)C(X-u)=和X的两部是A(X-u)∪{u}和D(X-u)且|A(X-u)∪{u}|=|D(X-u)|.(4)设X=Cay(Q,S),则对于u∈Q,A(X-u)∪{u}是X的一个最大障碍且X的最大障碍的个数是2或者是|Q|.更多还原

  • 标签: 匹配 n-可扩 障碍 CAYLEY图
  • 简介:称图G为导出匹配图扩的(简称为IM-扩的),如果图G的每一个导出匹配都包含在G的一个完美匹配中.本文给出了导出匹配扩图的一些局部运算.

  • 标签: 完美匹配 导出匹配 IM-可扩的
  • 简介:本文引入一类特殊的实值函数(模),并由此对Banach空间上凸函数的Fréchet微性,更一般地,β-微性进行了特征刻画.

  • 标签: 凸函数 可微性 次微分 连续模
  • 简介:设Sn是那个对称群让={1,2,…n},B^*中所有对对换的集合和B包含于B^*,关于B的对换图W,被定义为V(Wn)=,E(Wn)={[uv]L[uv]:(uv)∈B}。如果Wn是一棵树,则这个对换图称为一棵对换树Tn。Tn是Sn的一个极小生成集。在这篇文章里,我们研究了Cayley图Cay(Sn,Tn)的性质,证明了Cay(Cn,Tn)是(n-1)-扩的,即,Cay(Sn,Tn)的扩性达到最大。

  • 标签: CAYLEY图 对称群 n-可扩
  • 简介:称图G为导出匹配图扩的(简称为IM-扩的),如果图G的每一个导出匹配都包含在G的一个完美匹配中.本文给出了导出匹配扩图的一些局部运算.更多还原

  • 标签: 完美匹配 导出匹配 IM-可扩的
  • 简介:若图G的一个匹配M也是G的点导出子图,则称M是图G的一个导出匹配.我们称图G是导出匹配扩的,若它的任何一个导出匹配可以扩充成一个完美匹配.本文我们讨论无爪图的导出匹配扩性,得出如下结论,并同时指出这些结果是最好可能的.设图G是有2n个顶点的无爪图,1.若图G是最小度大于或等于2[n/2]+1,则图G是导出匹配扩的.2.若图G是局部2连通的,则图G是导出匹配扩的.3.若图G是k正则的k≥n,则图G是导出匹配扩的.

  • 标签: 无爪图 导出匹配可扩性 顶点 局部2连通图 完美匹配
  • 简介:本文介绍有限维齐次马尔夫模型,尤其引入几种在会计学上广泛使用的应用型马尔夫模型,诸如估价、成本分配、计划和控制等问题,而该模型可能应用的范围不仅是本文中所列举的一些例子,还可广泛推广到物理学、生物学、工程科学及其他社会科学等领域。

  • 标签: 马尔可夫模型 应收帐款 成本分配 状态空间 生产部门 吸收状态
  • 简介:如果对一个简单图G的每一个与G的顶点数同奇偶的独立集I,都有G-I有完美匹配,则称G是独立集削去的因子临界图.如果图G不是独立集削去的因子临界图,而对任意两个不相邻的顶点x与y,G+xy是独立集削去的因子临界图,则称G是极大非独立集削去的因子临界图.本文刻画了极大非独立集削去的因子临界图.

  • 标签: 独立集 独立集可削去的因子临界图 极大非独立集可削去的因子临界图
  • 简介:首先用微分中值定理推出了Newton-Leibniz公式,同时也用Newton-Leibniz公式推出了三个微分中值定理,从而证明了微分中值定理与Newton-Leibniz公式互相证明.

  • 标签: 微分中值定理 NEWTON-LEIBNIZ公式 互相证明
  • 简介:设Sn是那个对称群.让〈n〉={1,2,…,n},B*表示Sn中所有对换的集合和BB*.关于B的对换图Wn被定义为V(Wn)=〈n〉,E(Wn)={[uv]:(uv)∈B}.如果Wn是一棵树,则这个对换图称为一棵对换树Tn.Tn是Sn的一个极小生成集.在这篇文章里,我们研究了Cayley图Cay(Sn,Tn)的性质.证明了Cay(Sn,Tn)是(n-2)-扩的,即,Cay(Sn,Tn)的扩性达到最大.

  • 标签: CAYLEY图 对称群 n-可扩
  • 简介:本文在文献[6]的基础上,集中考虑一类带灾难的非线性马尔夫分枝过程的基本问题-唯一性,正则性和灭绝性。文章首先给出其Q-过程唯一性的证明,然后得出该畔程的正则性与[3]非线性马尔币夫分枝过程一样,最后,我们给出该Q-过程以概1l灭绝的充要条件是Q-过程正则。

  • 标签: 发生函数 唯一性 正则性 灭绝概率
  • 简介:该文章利用跳-扩散模型和几何布朗运动模型分别对股票价格和期权空头方资产负债比进行建模.在对违约风险的刻画上选取首达时模型,当资产负债比小于等于一时视为违约发生,并在此假定违约发生时期权立即执行,补偿率为外生随机变量.在跳跃幅度上,该文章给出了服从对数正态以及更一般分布的情况的讨论,同时在对股票的建模和对违约时刻的判断上分别完善了Rich和魏正元的工作,并使用Matlab工具对定价进行实现.

  • 标签: 期权定价 跳-扩散模型 首达时模型 鞅测度变换 条件期望
  • 简介:如果对一个简单图G的每一个与G的顶点数同奇偶的独立集1,都有G-I有完美匹配,则称G是独立集削去的因子临界图.如果图G不是独立集削去的因子临界图,而对任意两个不相邻的顶点x与y,G+zy是独立集削去的因子临界图,则称G是极大非独赢集削去的因子临界图.本文刻画了极大非独立集削去的因子临界图.

  • 标签: 独立集 独立集可削去的因子临界图 极大非独立集可削去的因子临界图
  • 简介:对于给定的图H,若存在图序列π的一个实现包含H作为子图,则称π为蕴含H-图的.Gould等人考虑了下述极值问题的变形:确定最小的偶整数σ(H,n),使得每个满足σ(π)≥σ(H,n)的n项图序列π=(d1,d2,…,dn)是蕴含H-图的,其中σ(π)=∑di.本文刻划了蕴含K4+P2-图序列,其中K4+P2是向致的一个顶点添加两条悬挂边后构成的简单图.这一刻划导出σ(K4+P2,n)的值.

  • 标签: 度序列 蕴含K4+P2-可图序列