简介:
简介:本质上,分子系统生物学就是要研究分子水平上的各种层次网络,并整合这些网络信息为系统信息。广泛使用的化学主方程为研究生物分子网络提供了一个建模框架,但应用起来具有局限性;传统的矩封闭方法可以简化生物分子网络的研究,但并没有解决反应物种的联合概率分布的重构问题。本文简单介绍了生物分子网络的数学建模与分析,特别地,对生化反应系统提出二项矩的分析方法,它与传统方法相比具有许多优势,如能够降低计算复杂度、方便联合概率分布的重构,甚至可用于非线性行为的线性逼近等。
简介:隶首注术辨析王为桐属算经十书之一的《数术记遗》中写道:“……叙问曰为算之体皆以积为名为复更有他法乎先生曰隶首注术及有多种及余遗忘记忆数事而已①其一积算其一太乙其一两仪其一三才其一五行其一八卦其一九宫其一运算其一了知其一成数其一把头其一龟算其一珠算其一...
简介:所谓微积分的基本思想,就是人类的基本认知规律“用‘已知’解决‘未知”’在解决变量数学时的具体体现;用微积分的思想来指导微积分的教学,能使学生站在一个高的层次,高瞻远瞩的看问题,因此,学点“思想”甚至比多学点知识都更为重要,但是,要使广大教师能在教学中揭示、介绍学科的“思想”,就必须将其融入到教材之中。
简介:《齐鲁珠坛》1995年第四期刊登王为桐同志《隶首注术辨析》,(以下简称《辨析》),引起许多读者注意。该文强调珠算起源于汉末,距今约一千八百年;如谁超越此限,就说是“乱用史据和传证,混淆视听”;从而冠以“不合逻辑”,“想像悬源”的头衔。
简介:通过矩阵乘法运算的拆行拆列表示,巧妙地绕过初等矩阵,建立了矩阵乘积的初等变换术,进而导出了原来运用初等矩阵才能导出的有关初等变换、逆矩阵、矩阵方程、矩阵等价的若干重要结果.
简介:刘徽的“割圆术”是中国数学史上的重要成就之一,其中包含着中国数学家对无限问题的独特认识和致用的处理方式.很多高等数学教科书在讲述极限概念时大都提及,但所述,并未体现刘徽本意.刘徽的“割圆术”是为证明圆面积公式而设计出来的一种方法,其融合了庄、墨两家理解和处理无限问题的方法,并且使用了数列极限的“夹逼准则”和不可分量可积的预设.通过这些相关知识的历史考察,试图以HPM的方法来辅助解凄极限概念教学的难题.
分子有理化的独特作用
分子系统生物学的数学建模与分析
隶首注术辨析
从刘徽的割圆术谈起
关于《隶首注术辨析》之辨析
矩阵乘积的初等变换术及其应用
数学史与数学教育(HPM)的一个案例——刘徽的“割圆术”与微积分