学科分类
/ 3
60 个结果
  • 简介:本文利用K-泛函、加权连续模与极大函数等工具,借助不等式技巧,在Orlicz空间内研究了复系数多项式的倒数逼近问题,得到了收敛速度估计的结果.

  • 标签: ORLICZ空间 加权连续模 逼近 多项式
  • 简介:利用Orlicz空间内有关不等式技巧在Orlicz空间内研究了用三角多项式的倒数逼近周期可微函数的问题.得到了一个逼近定理及其推论.

  • 标签: 逼近 周期可微函数 三角多项式
  • 简介:令Vn=span{1,2,…,n},设函数f∈Lp[E,μ],1≤p<∞,在点p处定义一个最佳Lp逼近算子τ∫(p)。记Nf(p)=∥f-τ∫(p)∥p=inf/Q∈Vn∥f-Q∥po本文证明了Nf(p)/[μ(E)]l/p是p的单调增加且有界的函数。如果f∈L∞[E,μ],则存在τ∫(∞)∈Vn,使得∥f-τ∫(∞)∥∞=inf/Q∈Vn∥f-Q∥∞,并且给出了最佳逼近值。

  • 标签: 最佳逼近 证明方法 零测度 有限维线性空间 可测集 HOLDER
  • 简介:有理逼近问题是函数逼近论的一个重要分支,为了在较大范围内研究有理逼近问题,本文在连续函数空间和L_p空间内研究有理逼近方法的基础上,利用修正的Bak算子,Hardy-Littlewood极大函数等工具,借助不等式技巧,研究了Muntz有理函数在Orlicz空间内的逼近问题,给出了光滑函数的Muntz有理逼近阶的两种估计,所得的结果明显优于前人的同类结果.

  • 标签: Bak算子 ORLICZ空间 Muntz有理逼近
  • 简介:本文引进带权的Chcbyshev逼近并给出它的应用。

  • 标签: 逼近 引进 应用
  • 简介:通过利用K泛函及光滑模、不等式等技巧,在Orlicz空间中讨论了Miintz有理逼近问题,得到了有理逼近的三种估计.

  • 标签: ORLICZ空间 Müntz有理逼近 连续模
  • 简介:通过对大量文献研究,回顾了最佳逼近论的研究进展.重点讨论了最有意义的可分离局部凸空间最佳逼近问题、以及最佳逼近问题与向量优化、Pareto有效性、多值函数等之间的直接联系.

  • 标签: 局部凸空间 最佳逼近 Pareto有效性 多值函数
  • 简介:我们从减弱文Vestfrid[1]中定理3中空间一致凸条件和加强ε-等距算子条件着手去研究Banach空间中几乎满的ε-等距算子的等距逼近问题.另外,我们结合完备的β-范(0

  • 标签: ε-等距 几乎满
  • 简介:基于双连续半群概念,引入一致双连续半群序列概念,借助Laplace变换和Trotter-Kato定理,考察双连续n次积分C余弦函数与C-预解式之间的关系,得到逼近定理的稳定性条件,进而得出双连续n次积分C余弦函数逼近定理.从而对Banach空间强连续半群逼近定理和双连续半群逼近定理进行了推广,为相应抽象的Cauchy问题提供了解决方案.

  • 标签: 双连续半群 一致双连续半群 n次积分C余弦函数 预解式 逼近定理
  • 简介:考虑了两类有理插值型算子的Jackson型估计.当p>1时,建立了Dilzian-Totik型定理,当p=1时,利用通常连续模给出了Jackson型估计.

  • 标签: Lp空间 有理插值型算子 Jackson估计