简介:为提高粒子群算法的搜索效率,克服分解方法处理复杂多目标问题的不足,通过考虑父代解的选择和种群的更新对算法收敛性及解的分布均匀性的重要影响,提出了一种基于分解的改进自适应多目标粒子群优化算法。首先,为提高算法收敛速度,在分解方法确保进化种群多样性的前提下,设计了新的适应度评价方法以评价个体的优劣,并将在竞争中获胜的优质后代解添加到父代候选解中;其次,为避免算法陷入局部最优,在更新粒子时,从当前粒子的邻居或邻居外随机选择个体最优和全局最优位置;最后,引入外部文档,将其作为候选的输出种群,并采用拥挤距离维持多样性,增强了算法处理复杂问题的能力。用12个测试函数的数值实验,并与5种多目标优化算法的比较,表明了所提算法的优越性。
简介:为避免演化算法在求解多峰函数优化问题时对冗余空间的过度搜索,提高差异演化算法的搜索效率,提出一种新的基于空间收缩的种群灭亡差异演化算法(DEESC),通过最优个体收缩可行空间,用均匀设计方法反复初始化种群,并且讨论了DEESC的主要参数敏感问题.
简介:PID控制技术成熟,广泛应用于化工生产过程控制中,阐述PID控制的典型结构,调节方法,主要阐述基于遗传算法的PID控制技术。
简介:关系数据的聚类算法对于传播研究意义重大,首先运用迭代系统隐喻个体结构的变化,用输出与状态的包含距离表示关系的非对称同时也确定拥有最高结构等级序列的节点来代表簇;再将Hausdorff距离引入DBSCAN算法,使得同结构节点进行合并的加和算子和层次上卷的并算子变得可压缩。运用复杂网络研究人员的数据对算法的有效性进行了评估,分层后的人员合作网具有不同的网络结构特征;关键词在层次2网络中的传播效率高;互惠关系在知识传播中的作用最大。新的发现证明算法通过引入Hutchinson算子的可压缩测度Hausdorff距离使得网络结构对传播效果的影响得以体现,该算法的设计思路是正确的。
简介:给出一种标号的二分图公交网络模型,在此模型基础上给出线路换乘与最优出行路径的算法,这种算法充分利用标号信息给出站点网络图的边权函数。基于站点网络图不仅能够搜索换乘线路而且能够找到最短路径。最后利用天津市部分公交系统验证了该模型及方法的有效性。