学科分类
/ 1
1 个结果
  • 简介:研究复杂系统的自聚集演化过程和聚集量.文中给出两个类似生长网络的模型.第一个模型比较简单,每一时间步长只有一条新边进入网中,但概括面较广,例如可描写选举、科学论文引用、食物源对蚁群蜂群的吸引、某种商品或股票、堤坝渗漏处,等等.第二个模型比较一般,每次可有m条新边进入网络.文中引用BA网络模型给出的"优先连接"的概念,研究上面两个网络中各点的聚集量.结果表明:对于这两个模型,各点可能的聚集量均可用一个数学期望的简单公式描述,即Ets=ks/t0t.其中,s表示网中某点,t0是初始时间,ks是t0时点s的顶点度,t是任何时间,t也是此时网的总度数,或总聚集量.ks/t0表征点s的初始优势或初始吸引能力,点可称为吸引,ks/t0可称为吸引系数.文中解释了对于不同情况下Ets=k/t0t的意义.

  • 标签: 复杂系统 自聚集 生长网络 优先连接 聚集量