学科分类
/ 25
500 个结果
  • 简介:通过计算机视觉系统获取地砖图像,经过图像处理提取得到相关的图像特征数据,再将特征参数作为输入建立RBF神经网络模型,利用神经网络所具有的自组织、自学习和分布式存储信息的特点对地砖进行可控的自动分类。实验证明,此方法为地砖检测分类提供了一个有效的途径。

  • 标签: 神经网络 色差 分类 地砖
  • 简介:机器人焊接因受到加工精度、组装精度以及环境等因素的影响,焊枪在运行时不可避免地会偏离焊缝位置,从而影响焊接品质。因此对焊缝图像进行特征提取,实现机器人焊接自动跟踪,即通过将焊缝与背景进行有效区分,提取出焊缝图像的中心线,为自动跟踪系统提供可靠信息,帮助机器人焊枪纠偏,提高焊接精度,实现焊接过程的自动化、柔性化、信息化、智能化。

  • 标签: 机器人焊接 焊缝图像 特征提取技术
  • 简介:提出了一种基于单词分类神经网络语言模型,以解决归一化问题。实验方法为,在基础翻译系统中加入模型参数,然后利用开发集调整参数,再对测试集进行翻译,对比加入模型参数前后的翻译质量以及训练模型和翻译过程所需时间。实验结果表明,在保证归一化的前提下,该模型的性能优于Vaswani等人的模型,且翻译质量与Vaswani等人的模型相当。

  • 标签: 机器翻译 语言模型 单词分类
  • 简介:把粗糙集与神经网络结合,应用于文本分类,可以充分发挥两种方法的优势,取长补短.粗糙集理论可以有效地对样本集进行约简,从而简化了神经网络的结构,减少了网络的训练次数,学习速度和分类精度明显提高.并用仿真实验验证了此方法的有效性。

  • 标签: 粗糙集 神经网络 文本分类
  • 简介:针对精密定位装置存在非线性,精确数学模型难于建立的缺陷,提出了精密定位的神经网络控制方法.将BP神经网络应用于该控制系统中,系统以光栅常数100μm的光栅为定位标记,以激光衍射产生的莫尔光光强及光强的变化率为神经网络的输入变量,利用神经网络的自学习功能进行精密定位控制.建立了精密定位的神经网络控制模型,模型由输入层、隐层和输出层3层神经元组成,通过对光强及光强变化率的映射,得到电机驱动信号.实验结果表明,使用神经网络控制,控制响应快,稳定性好,鲁棒性强,可有效改善控制质量,提高定位速度,系统可获得±0.5μm的定位精度.

  • 标签: 莫尔信号 超精密定位 神经网络 智能控制
  • 简介:BP算法是人工神经网络研究的一个常用方法,但从本质上说是属于局部寻优法,容易陷入局部极小点,且存在着学习速度与精度之间的矛盾;遗传算法是一种全局优化算法,具有并行计算能力.本文采用遗传算法来训练前向神经网络,建立一个基于遗传算法和BP算法的神经网络预测模型.试验结果表明它是一个成功较高的预测模型.

  • 标签: 遗传算法 神经网络 BP算法
  • 简介:本文对本世纪80年代中期兴起并紧密结合现代科学技术进步的一门新兴学科--模糊神经网络进行了综述,分析了所取得的主要成果及其特点,并指出了今后模糊神经网络研究中有待解决的许多问题.针对这些问题,介绍了笔者的工作--模糊逼近神经网络摄动系统,对开展模糊神经网络的研究将具有启迪作用和现实意义.

  • 标签: 模糊集 模糊逼近神经网络摄动系统 模糊神经网络 人工神经网络
  • 简介:本文首先提出了一个双语教学评价体系,在此基础上构建了一个BP神经网络评价模型,很好地解决了教学评价体系中各项指标所占的权重问题。使用Matlab进行仿真的实验结果验证了该模型的智能性和有效性。

  • 标签: 双语教学 教学评价 BP神经网络
  • 简介:研究了Hammerstein模型的辨识问题,并考虑了多输入多输出(MIMO)情况.提出一种混合神经网络辨识模型,该模型由一个多层前馈神经网络(MFNN)与一个线性神经网络(LNN)串联而成.给出了一个反向传播(BP)算法同步训练该混合神经网络的权值和阈值.仿真结果表明了该方法的有效性.

  • 标签: 神经网络 非线性系统辨识 Hammerstein模型
  • 简介:提出一种基于BP神经网络的异常入侵检测方法,由于BP神经网络是一种基于误差反向传播算法的多层前馈神经网络,具有对不确定性的学习与适应能力,可以很好的满足入侵检测分类识别的需求.对“KDDCup1999Data”网络连接数据集进行特征选择和标准化处理之后用于训练神经网络并仿真实验,得到了较高的检测率和较低的误报率.仿真实验表明,基于BP神经网络的入侵检测方法是有效的.

  • 标签: 入侵检测 异常检测 神经网络 BP算法
  • 简介:本文研究了一类具偏李普希兹连续和单调增加激活函数的神经网络绝对指数稳定性问题.所得结果归结为如果联接矩阵T的负矩阵是一个非负对角元的H矩阵,那么在任意输入向量和网络参数的条件下,所选激活函数只要是偏李普希兹连续且单调增加的,广义动态神经网络绝对指数稳定.该广义动态神经网络包含常用的Hopfield神经网络,双向联想记忆神经网络和细胞神经网络作为其特殊情形,所得结论推广了现有文献中的有关结论.

  • 标签: 广义动态神经网络 绝对指数稳定性 偏李普希兹连续性 HOPFIELD神经网络 联接矩阵 激活函数
  • 简介:为准确预测电力系统中期负荷,针对常用BP算法的预测速度慢、易陷入局部最优解的缺点,改进了基本BP算法,建立了中期负荷预报模型。负荷预测仿真表明,对BP算法的改进可使预测精度和收敛速度均得到显著的提高.

  • 标签: 电力系统 负荷预测 人工神经网络 BP算法
  • 简介:应用BP神经网络对网店销售模型进行了研究,建立了基于店铺访客数、下单转化率、客单价和商品收藏次数来预测网店销售额的BP神经网络模型,模型的训练样本为五皇冠淘宝网店2016-04-21至2016-07-09时间段销售数据,应用构建的模型预测该网店2016-07-10至2016-07-19时间段店铺销售额,仿真模拟实验结果表明其能准确地预测店铺销售额,从而验证了模型的有效性和准确性.

  • 标签: BP神经网络 网店 销售预测
  • 简介:提出了一种基于模糊观测数据的RBF神经网络(FORBFNN),用于解决一类输出不可精确测量但可用模糊隶属度来表征的非线性系统建模问题.神经网络模型中各隐层神经单元的权重系数采用一种新的模糊EM算法辨识获得;隐层神经单元的数量及径向基函数的中心和宽度基于一种数据驱动的方法自适应确定,即首先初始生成一个隐层单元,然后根据一定的规则逐步加入新的单元,该过程不断迭代直到模型满足预设要求.该方法同时考虑了模型的复杂度及预测精度.数值模拟实验结果表明该建模方法是有效的,且建立的模型具有较高的预测精度.

  • 标签: RBF神经网络 模糊隶属度 不精确观测值 回归模型
  • 简介:结合支持向量机和神经网络各自的优点,提出了一种新颖的自适应支持向量回归神经网络(SVR—NN).首先,利用支持向量回归方法确定SVR—NN的初始结构和初始化权值,基于支持向量自适应地构造SVR—NN神经网络的隐层节点;然后,使用退火过程的鲁棒学习算法更新网络节点参数和权值.为了验证所提出方法的有效性,给出了自适应SVR-NN应用于非线性动态系统辨识的实例.仿真结果表明,与以前的神经网络方法相比,基于SVR-NN网络的辨识方案能获得相当好的性能,它具有很快的收敛速度.因此,自适应的SVR—NN为非线性系统辨识提供了极有吸引力的新途径.

  • 标签: 支持向量回归 神经网络 系统辨识 鲁棒学习算法 自适应性
  • 简介:基于B样条神经网络对实测地磁数据进行曲面拟合,该网络不仅保留了B样条基函数在速度方面的改进,同时也继承了神经网络在计算精度方面的优势。选用了一种修正速度最快的改进的LMBP算法进行权值的修正,最后也通过Matlab仿真实验证明了基于B样条神经网络的拟合算法在速度与精度方面的优越之处。

  • 标签: B样条神经网络 曲面拟合 改进LMBP算法
  • 简介:在工业过程控制系统中,许多被控对象具有纯滞后的性质,这种纯滞后环节将导致系统不稳定。针对这种情况设计了一种控制器,这种控制器结合了模糊控制和神经网络控制的优点,可以在线调整得到一组最优的PID控制参数。仿真结果表明这种控制器结构简单,对纯滞后系统的控制效果良好。

  • 标签: 纯滞后 模糊神经网络 PID控制 参数调整
  • 简介:讨论BP神经网络的原理及其缺陷和改进方法.在MATLAB环境下,对含噪声文字符进行识别训练.仿真结果表明,网络收敛速度快,识别分类效果好.

  • 标签: 人工神经网络 BP网络 字符识别
  • 简介:安全库存水平设置是供应链管理的重要内容,但因其影响因素多、关系复杂,预测难度大.神经网络在处理非线性问题有独特的优势.GRNN神经网络是建立在数理统计基础之上的一种新型的神经网络,具有良好的函数逼近效果.本文利用GRNN神经网络的方法进行供应链安全库存水平预测,详细介绍预测模型及其实施办法,并通过实例验证本方法的有效性.

  • 标签: GRNN神经网络 供应链管理 安全库存 函数逼近 数理统计
  • 简介:文章叙述了FIR滤波器设计的不同方法,包括窗函数和频率采样,详细研究了FIR线性相位滤波器的幅频特性与余弦基神经网络算法的关系,给出了神经网络的训练算法,并应用该方法构造了一个中心频率大于10KHz的带阻滤波器。通过MATLAB仿真实现,与常规的用窗函数法设计的滤波器进行了对比,发现基于神经网络的方法所设计出的滤波器通带阻带无过冲无波动,具有更好的性能。

  • 标签: 余弦基神经网络 FIR滤波器 MATLAB仿真