简介:摘要:截至2020年底,并网风电装机容量28153万千瓦,增长34.6%,占全国电源总装机容量的12.8%。在高速发展的背后却隐藏着急需解决的安全隐患,而风电机组漏油就是其中最为严重的问题,轻则污染机舱环境、重则引起整个机组火灾,及倾斜与倒塌。因为油具有难以挥发性及粘性的物理特性,通过传感器的方式进行检测,不能复位并实现持续检测。只有通过机器视觉即视频技术手段才能实现非接触式可持续检测,因为机舱内具有相对均衡的光线环境,相对恒定的测量距离,相对静止的参照背景等三个有利条件,通过卷积神经网络深度学习方法,对舟山二十台风电机组几十万张现场照片进行训练,并通过高性能人工神经元网络单元(NPU)进行运算,形成了产品化解决方案并成功应用到项目中。
简介:摘要:我国国民经济以及电力相关技术的发展,使得我国的电力事业得到了较快的发展,而在整体电力系统中关键的设施之一就是电力变压器,和电力系统之间的安全稳定运行有着十分紧密的联系,这也正是对其进行检测工作的重要原因。在微电子、计算机等先进技术不断发展的影响下,针对电力变压器进行在线实时监测已经有了极高的可行性。因为油浸性质的电力变压器在运行过程中气体溶解的类型不会出现对应的差异,传统故障诊断方式对于这些复杂多变且无标签的数据无法进行充分应用,因此一种基于深度学习神经网络的诊断方式应运而生。本文先从深度学习的概念以及深度学习神经网络模型分析入手,并在文后详细的在电力变压器故障诊断中如何运用深度学习网络进行了分析。
简介:摘要:电力变压器诊断是根据变压器故障特征,定故障的性质或者类别,为变压器的检修决策提供依据。文章对变压器油溶解气体的来源、特点及产生原因进行分析,通过构建变压器油中溶解气体与变压器故障之间的对应关系的专家系统,运用神经网络算法对变压器进行全面诊断,仿真结果表面文章所示方法具有可行性。
简介:摘要:近几年,能源问题已经成为社会发展中极为重要的一部分,能源危机的出现使得资源获取的过程中,人们渐渐地从原本的不可再生能源逐步转化成为清洁能源、可再生能源,而风力发电则成为能源研究中的重点。由于风力发电具有非持续性以及随机性这一特点,这也使得风力发电在安全性以及稳定性、供电质量上有待提高。选择IBAS-BP神经网络方式则能够更好地对风力发电的效果进行有效地预测,能确保在开展在使用风力发电时,其使用质量能够得以提升。