简介:针对传统军事命名实体识别方法存在人工构建特征复杂和军事文本分词不准确等问题,提出了一种基于深度学习的军事命名实体识别方法。结合双向长短时记忆(Bi-directionalLongShort-TermMemory,Bi-LSTM)神经网络对较长句子上下文的记忆能力、字向量(characterembedding)对汉字语义的表示能力和条件随机场(ConditionalRandomField,CRF)对标注规则的学习能力,构建了character+Bi-LSTM+CRF实体识别模型。为验证方法的有效性,在军事想定语料集上进行了实验,结果表明:该方法比传统方法识别效果好,识别准确率、召回率和F值均大幅提升。
简介:高分专项用于加快中国的空间信息与应用技术发展,通过建设一个高分辨率的对地观测系统,一方面满足国民经济建设与国家安全的需要,另一方面提高中国遥感产业的自主创新能力。近年来,随着"高分一号"、"高分二号"卫星的成功发射和广泛应用,中国迈向"感知"大国,遥感应用步入了"黄金期",遥感技术在中国国土监测、环境监测、交通等各行业都有应用,影响着人们生活的各个方面。遥感卫星系用作外层空间遥感平台的人造卫星。遥感卫星能在规定的时间内覆盖整个地球或指定的任何区域,当沿地球同步轨道运行时,它能连续对地球表面某指定地域进行遥感。所有的遥感卫星都需要有遥感卫星地面站,卫星获得的
简介:针对新型作战体系下以装甲车辆为主的地面目标的被动声识别问题,为实现不同车型在不同工况下的声识别,以常见的3种坦克和4种履带式装甲车为识别对象,提出了一种基于变分模态分解(VariationalModeDecomposition,VMD)和人工蜂群(ArtificialBeeColony,ABC)算法优化的支持向量机(SupportVectorMachine,SVM)相结合的装甲车辆声识别模型。首先,采集不同工况下的车辆噪声信号并进行频谱分析,证明了VMD分解的可行性;其次,对样本信号进行VMD分解,得到不同尺度的本征模态函数(IntrinsicModeFunction,IMF)并进行多尺度模糊熵(Multi-scaleFuzzyEntropy,MFE)的计算,得到多尺度模糊熵特征(VMD-MFE);然后,利用优化算法对SVM进行优化,得到最优参数优化的分类器模型;最后,对噪声信号进行特征提取和分类实验。结果表明:VMD的分解效果优于经验模态分解(EmpiricalMadeDecomposition,EMD)和集合经验模态分解(EnsembleEmpiricalModeDecomposition,EEMD);与引力搜索算法(GravitationalSearchAlgorithm,GSA)和布谷鸟搜索(CuckooSearch,CS)算法相比,ABC算法得到的优化模型ABC-SVM具有更高的识别率,可达94.14%以上。
简介:为进一步提高弹道导弹目标多传感器综合识别正确率,提出了一种基于二维主成分分析(Two-DimensionalPrincipalComponentAnalysis,2DPCA)的多传感器特征级综合识别方法。该方法将多个传感器的特征集经标准化后组合成二维特征矩阵,引入图像压缩技术中的2DPCA方法进行特征提取,然后将其用于弹道导弹目标特征级融合识别。以3部雷达部署下弹头目标的雷达散射截面积(RadarCrossSection,RCS)特征融合为例进行仿真验证,结果表明:相比于传统的主成分分析(PrincipalComponentAnalysis,PCA),2DPCA的识别率更高,计算复杂度更低,为弹道导弹目标识别提供了一种新的思路。
简介:为提高无人车行驶过程中前方车辆检测的准确性和实时性,提出了基于激光雷达(LIghtDetectionAndRanging,LIDAR)深度信息和视觉方向梯度直方图(HistogramsofOrientedGradients,HOG)特征的车辆识别和跟踪方法。目标首次进入视野时,聚类处理激光雷达深度信息并确定假设目标的候选区域,采用车辆尾部的HOG特征对假设目标进行验证。在HOG特征验证前,基于最小二乘支持向量机(LeastSquaresSupportVectorMachine,LS-SVM)算法对样本集HOG特征进行训练学习,生成车辆分类器模型。对于验证后的目标车辆,采用激光雷达获取的深度信息对目标车辆进行持续跟踪。构建了2种车辆模型,结合最小二乘直线拟合方法提取出车辆特征,生成目标模型。同时,提出了基于多特征马氏距离的目标关联代价方程,实现了多目标的关联;完成了基于卡尔曼滤波的车辆状态滤波和位置估计,更新了跟踪器模型。通过有效的管理策略,实现了目标跟踪的3个状态:1)初始化模型的生成;2)跟踪过程中跟踪器的更新与预测;3)目标驶离视野时跟踪器的删除。最后,通过试验验证了跟踪算法的有效性。