简介:建立相对论性的组分夸克模型,求解了B和(?)、(?)的BS波函数,并计算出B→(?)和B→(?)跃迁强子矩阵元的形状因子及其斜率,进而计算出半轻子弱衰变B→(?)l+vt和B→(?)l+vt的衰变宽度.与实验值比较定出CKM矩阵元│vcb│=0.042±0.003.
简介:针对传统军事命名实体识别方法存在人工构建特征复杂和军事文本分词不准确等问题,提出了一种基于深度学习的军事命名实体识别方法。结合双向长短时记忆(Bi-directionalLongShort-TermMemory,Bi-LSTM)神经网络对较长句子上下文的记忆能力、字向量(characterembedding)对汉字语义的表示能力和条件随机场(ConditionalRandomField,CRF)对标注规则的学习能力,构建了character+Bi-LSTM+CRF实体识别模型。为验证方法的有效性,在军事想定语料集上进行了实验,结果表明:该方法比传统方法识别效果好,识别准确率、召回率和F值均大幅提升。