简介:【摘要】随着社会发展的需要和相关技术的成熟,机器人所具备的功能日益强大和全面,其应用范围也随之不断增加。机器人目前已走进人们的日常生活,并在人类生产和生活中的众多领域中发挥着日益重要的作用。人类对机器人的功能需求早已超越了简单意义上的人工劳动替代,而是需要机器人能在不同环境中完成各种各样的任务,从而满足人类的各种需求。为进一步提高机器人在复杂环境中自主导航的智能化水平,项目以室内机器人平台为研究对象,以深度学习技术为基础,通过联合不同模式的深度学习算法来解决机器人环境感知和运动策略学习问题,构建具有自组织、自适应和自学习能力的室内机器人导航系统。
简介:摘要目的构建一种基于深度学习的肺结节分类以及分割算法,探究其在不同CT重建算法下的诊断效能。方法回顾性收集2019年6至9月天津医科大学朱宪彝纪念医院放射科363例胸部CT平扫影像学资料,每例患者的胸部CT平扫均包含三种CT重建算法(肺重建、纵隔重建、骨重建)生成的图像,这些数据构成了模型的测试集;模型的训练集由公开数据集(LIDC-IDRI)和私有数据集共4 185例患者胸部CT图像组成。模型的构建采用3D深度卷积神经网络和递归神经网络结合的方式,在多任务联合学习下训练肺结节密度类型分类和分割,最后将训练好的模型在天津医科大学朱宪彝纪念医院放射科363例测试病例上进行效果测试,得到三种CT图像重建算法下结节分类准确率和分割Dice系数指标。采用方差分析对三种CT重建算法下的结节分类准确率和分割Dice系数进行比较以分析差异是否有统计学意义。结果在三种CT重建算法下,模型对肺结节密度类型的分类准确率分别为98.67%±5.70%、98.38%±6.61% 和97.89%±7.32%,其中实性结节的分类准确率分别为98.79%±5.58%、98.49%±6.89%和97.90%±7.41%,亚实性结节的分类准确率分别为97.57%±10.19%、98.52%±7.77%和98.52%±7.77%,三种不同重建算法下的肺结节的分类准确率差异无统计学意义(均P>0.05)。三种重建算法下,所有结节分割的Dice系数分别为79.87%±5.78%、79.02%±6.04%和79.31%±5.95%,三组间结节分割的Dice系数差异无统计学意义(均P>0.05)。结论结合了3D卷积神经网络和递归神经网络的深度学习算法,对不同CT重建算法图像中肺结节的分类和分割均有较为稳定的效果。
简介:摘要目的采用主客观评价系统分别评价深度学习方法在动静脉期CT上的分割效果,并探索影响动静脉期胰腺分割差异的因素及影响静脉期胰腺分割的相关因素。方法回顾性收集2019年1至11月北京协和医院放射科218例胰腺CT扫描数据,每例均包含动脉期和静脉期图像,并按照训练集+验证集与测试集为7∶3的比例将数据随机划分为训练集(139例)、验证集(20例)及测试集(59例),使用训练集训练二阶段全局局部渐进融合网络,在验证集上寻找最优分割效果的模型参数,对测试集进行预测并对结果进行主观及客观评价。主观评价基于胰腺与周围器官的临界区域,采用李克特5分量表;客观评价采用Dice相似系数(DSC)。采用配对t检验或Wilcoxon配对秩检验比较动静脉期主客观评分的差异。结果在十二指肠、十二指肠空肠曲、左肾上腺、门脉、肠系膜上静脉、脾动脉及脾静脉处胰腺临界区域动脉期主观评分[M(Q1, Q3)]分别为4(4, 5)、5(4, 5)、5(4, 5)、4(4, 5)、5(4, 5)、5(5, 5)及4(3, 5)分,静脉期主观评分[M(Q1, Q3)]分别为4(4, 4)、5(4, 5)、5(4, 5)、5(4, 5)、5(5, 5)、4(3, 4)、5(5, 5)分,以上临界区域的胰腺动、静脉期主观评分差异均有统计学意义(均P<0.05);静脉期DSC略高于动脉期,差异无统计学意义(DSC:0.923比0.921, P=0.952)。胰腺与十二指肠空肠曲、胃、左肾上腺存在脂肪间隙组在静脉期主观评分分别为4.64、4.68及4.63分,无脂肪间隙组的主观评分分别为4.56、4.62及4.56分,胰腺与十二指肠空肠曲、胃、左肾上腺有、无脂肪间隙两组间的主观评分差异均有统计学意义(t=2.147、2.112、2.277,均P<0.05)。除外脾,胰腺临界区域与其余周围器官的密度差在动静脉分割的差异均有统计学意义(均P<0.05)。结论利用双期CT构建深度学习胰腺自动分割模型,并对分割效果进行主客观评价,主观评价可以提高今后胰腺临界区域的分割能力。
简介:摘要目的探讨基于深度学习重建算法(DLR)的冠状动脉CT血管成像(CCTA)图像质量和对钙化病变所致冠状动脉狭窄的诊断价值。方法前瞻性纳入2020年2月至2021年2月北京协和医院放射科确诊或拟诊冠心病的33例患者,其中男26例,女7例,年龄45~86(61.9±9.0)岁。所有患者接受CCTA检查并于1个月内进行有创冠状动脉造影(ICA)检查。采用DLR和混合迭代重建算法(HIR)重建CCTA图像。分别在主动脉根部、左主干开口、左前降支近段、左回旋支近段及右冠状动脉近段选取不同的感兴趣区测量两种图像的噪声、信噪比(SNR)、对比噪声比(CNR),并以Likert 4级评分法进行图像质量主观评分(1分,优秀;4分,不能诊断)。以ICA为金标准,计算基于DLR和HIR的CCTA诊断钙化斑块所致冠状动脉血流梗阻性病变的诊断效能。结果共33例患者的123处病变纳入分析。DLR图像的噪声低于HIR图像(定义为主动脉根部CT值的标准差:18.12±3.66比24.19±5.71,P<0.001),CNR和SNR均高于HIR图像(主动脉根部CNR:43.83±23.73比26.38±9.69,P<0.001,SNR:26.66±7.83比21.23±8.65,P<0.001),主观评分优于HIR图像(1.12±0.41比1.46±0.60,P<0.001)。DLR与HIR对于诊断钙化病变所致冠状动脉血流梗阻性病变的灵敏度、特异度和准确度分别为100.0%、77.4%、78.9%和100.0%、63.5%、65.9%。与HIR相比,DLR图像上CCTA的假阳性病例减少38%。结论基于人工智能的DLR重建算法能够显著降低CCTA图像噪声并提高图像质量。DLR有助于提高CCTA对钙化斑块所致冠状动脉血流梗阻性病变的诊断效能,具有良好的临床应用价值。