简介:通过对ASTSA与PATRAN的对比,提出了热阻元的模型建立新思路,同时实现了边界单元材料参数输入、单元死活的实现、内部热生成的判别、载荷类型的选取、时间函数曲线的输入功能以及瞬态计算结果的云图与曲线显示,为其它有限元分析程序与PATRAN平台接口提供了一种有效的途径。
简介:随着高速大机动航空技术的发展,为武器鉴定及日常训练提供目标特性的靶标也应具备高速大机动能力。但是高速大机动能力就要求动力系统不仅在高速和大过载飞行工况下具有较大推力,而且应具有较大变推范围以适应靶标较宽的飞行包线。由于国内航发动力目前性能较低而无法满足该类型靶标需求,因此采用火箭动力就成为一种选择。已有采用火箭动力系统的飞行器大多采用推力室变推技术结合多推力室方案来实现大范围变推,但是这无疑就增加了设计参数和设计维度,导致设计分析工作会大大增加。针对这一要求,结合某型靶标的动力系统设计要求进行了动力系统设计参数分析,确定采用最小比冲及包线范围内主要工况点推力偏差的范数来进行设计方案的优劣对比,并借助粒子群优化算法进行了设计方案的优化选择,从而得到了较好的动力系统设计方案及参数。
简介:发展了三维线性插值算法用于CSD/CFD耦合计算数据交换,对某型液体火箭发动机部分进气涡轮进行了气/热/固多学科耦合数值仿真。结果表明,发展的三维线性插值程序对网格类型限制性小,计算简单,计算量小,插值结果能够满足耦合计算要求。仿真结果表明,某型火箭发动机涡轮由于其部分进气结构设计和叶轮高速旋转,设计工况下在涡轮转子入口处产生了较强的激波,激波与边界层干涉不仅使涡轮转子叶片的载荷分布出现了强烈的不均匀性,同时在叶轮的高速旋转下,该涡轮转子受到强烈的气动、热交变力冲击,其结构强度问题变得尤为突出。耦合计算分析认为设计工况下,该型涡轮结构设计,转子强度能够满足要求。
简介:在飞机结构坠撞、汽车撞击等仿真中,需要材料中应变率(1-200/s)特性,能否准确通过试验获得材料的中应变率特性成为这些仿真结果可靠的关键。中应变率材料试验机可以将试验件以中应变率的速度拉断,但是当应变率大于10时,力传感器所测力并不等同于试验件破坏处力。本文利用有限元计算方法,对试验件以应变率160/s进行拉伸仿真,通过与试验数据对比,进行参数优化,反演出材料的本构关系;将反演的本构模型用于应变率为20/s的材料拉伸试验仿真,与试验结果对比最大误差为5%,满足了工程需要;这说明通过材料高速拉伸试验、有限元仿真、参数反演相结合的手段可以较为准确地获得材料应变率在160/s以下的本构模型。