简介:采用胶-螺混合连接的目的一般是出于破损安全的考虑,得到比只有机械连接或胶接更好的连接安全性和完整性,但由于两者的连接刚度相差悬殊,通常只有胶接结构发生失效后机械连接结构才开始承力。针对该问题,开展了铝合金连接板、钛合金螺栓的胶-螺混合连接结构的传力分析研究。利用粘聚区模型模拟胶层的失效过程,并考虑了金属结构的塑性变形。同时,通过胶接、机械连接及胶-螺混合连接三种形式分别进行了方法验证,试验结果和模拟结果吻合较好,证明了所采用的胶-螺混合连接分析方法的有效性。另外,分别建立了单钉和双钉胶-螺混合连接结构模型,分析发现相对于胶接结构,单钉混合连接结构的承载能力并不会有明显提高。同时发现两钉胶-螺混合连接中两螺栓外侧的胶层由于较大的面外力会很快发生破坏,而两螺栓内侧的胶层由于螺栓的法向作用使得其只受纯剪切力,从而提高了该区域胶层的承载能力。鉴于此对混合连接构型进行了优化,很好地提高了连接强度。
简介:重新考虑几种混合推进的一般方案后,本文第一部分给出了在公开文献上发表的欧洲研究工作和近期活动的摘要。第二部分是混合式推进潜在优越性的关键研究,且和液体及固体推进剂相比较。对性能、工作适应性、安全性、可靠性、成本、及对周围环境的影响特性成功地进行了研究,也提及了混合式推进的几个特殊问题。第三部分研究了作为空间运载器的混合式推进分式的可能应用,给出了混合式火箭的不同方案,提出了最适合每种应用的方案。结论部分概述了一个策略。即明确了空间活动中混合式推进的未来,并理性地开始可能的研究。
简介:以航空发动机低压中介主轴为研究对象,利用ANSYS软件对低压中介主轴进行有限元分析,得到主轴不同关键截面的应力-应变。基于临界平面法,在分析原有模型损伤参量的基础上,引入最大法向应力对原有模型进行修正,并利用坐标变化原理,明确了临界平面及控制损伤参量的确定方法。在存在平均应力时,修正后的模型可直接用于材料的多轴疲劳寿命预测。在此基础上,利用修正后的多轴疲劳寿命预测模型对低压中介主轴进行寿命预测,并从危险截面位置确定和预测寿命大小方面与传统的EGD-3寿命预估法进行对比分析。结果表明:EGD-3寿命预估法预测寿命偏于保守,且预测的危险截面位置与已有试验数据不符。与之相比,利用多轴疲劳寿命预测模型可以更好地预测低压中介主轴的危险截面位置和多轴疲劳寿命。