简介:针对轨道电路故障信息存在大量重复样本和冗余属性,提出一种基于粗糙集和C4.5决策树算法相融合的轨道电路故障诊断方法。轨道电路故障特征数据多为连续量,需要根据模糊集理论对故障样本进行模糊化,形成离散决策表。利用粗糙集处理不完备决策表的能力,去除离散决策表的冗余属性得到约简表,结合决策树c4.5算法对约简决策表进行快速训练提取诊断规则,产生的诊断规则清晰、可解释性强,能够直接运用于轨道电路故障诊断中。最后利用模拟数据仿真验证该方法的有效性,与ID5算法和BP神经网络法进行对比,仿真测试表明该方法具有更高的诊断效率和准确率,对实现轨道电路快速鲁棒故障诊断具有一定意义。
简介:目的:有效且准确地提取肺部轮廓是自动计算心胸比例、判断心脏增大的一项很关键的步骤。胸片图像由于器官之间的灰度重叠以及病人体位的影响,肺部边缘不是很清晰,肺部区域内的灰度分布也不均匀,因此,对胸片图像肺部区域的分割具有一定的难度。本文提出一种基于改进的C-V水平集模型的肺部轮廓提取算法。方法:通过改进梯度函数及演化过程来提高算法的准确性和速度。结果:改进后的C-V水平集算法比原始算法的时间迭代次数减少1/3,时间大大缩短,演化效率提高,计算机自动分割速度加快。结论:实验表明,该算法简单高效,能提高图像分割的速度,适合应用于胸片肺部轮廓的提取,为自动计算心胸比率提供了较好的方法。