简介:【摘要】:本项目为了对车辆轻量化中的无铆钉冲压连接进行优化,引入深度学习中的全连接神经网络,通过传感器传回的实时接头数据,对压力连接接头的力学性能进行实时检测,并传回控制主板经由神经网络的感知、处理、预测、优化、输出控制接下来的工艺参数。
简介:摘要:近几年,入室盗窃、抢劫等事件屡有发生,人们的生命财产安全受到威胁。随着社会经济的发展和信息化的进步,人们对家居安防的要求越来越高,财产和人身安全已成为家居安防的首要要求。目前家居安防的应用已经比较广泛,最常见的就是在居民住宅区安置摄像头,通过家庭电脑端控制。虽然这种方式可以监控整个住宅环境,但是缺乏时效性,用户无法在事故发生的第一时间获取信息,而且成本比较高。因此针对这些问题,本文设计了基于卷积神经网络的智能家庭安防监控系统,通过卷积神经网络对摄像头采集的图像进行实时目标检测;然后将识别结果和视频链接通过单片机发送至用户手机端,把单片机的便捷与卷积神经网络算法的强大功能相结合,能够让用户在第一时间得知住宅情况,打破了传统的家居安防系统模式,使家居安防更加智能化。
简介:摘要: 常规 PID控制是工业控制中经常使用的控制方法。 BP神经网络控制的方法可以使控制器具有较好的自适应性,可以实现参数自动调整。本文主要设计了常规 PID控制系统和 基于BP神经网络的 PID控制的温室控制系统,通过 MATLAB对两者进行仿真对比, BP神经网络控制系统对不同的对象具有适应性、控制效果更好。
简介:摘要:随着时间的推移,国内社会已经进入到一个快速发展的信息时代、智能时代,其重要表现就是不同的识别系统开始在各个领域内进行运用,人脸识别系统就是其中之一,并且取得了很好的作用和效果。目前人脸识别系统的研究已经成为了模式识别领域中的一个重点课题,在身份认证、智能监控、信息安全和金融安全等等领域都具有良好的发展前景。目前人脸识别系统的运用主要具有以下几个芳年,包含安全控制、司法运用等等,后续很有可能发展成为一个巨大的、对人类生活、工作产生深刻影响的产业,需要给予相应的重视。故此,在本文中主要针对基于模糊RBF神经网络的人脸识别系统进行系统的研究和分析,其主要目的在于促进基于模糊RBF神经网络的人脸识别系统的运用,使得这一系统具有很好的学习能力,提升人脸识别的准确率。
简介:摘要:在全球经济高速发展的时代背景下,人们的生活水平也不断提高,汽车成了每家每户必不可少的交通工具。再加上交通物流业的迅猛发展,交通事故也频繁发生。研究发现,导致交通事故的最主要的因素就是汽车驾驶存在盲区。视野盲区阻挡驾驶员的视线,导致驾驶员在遇到突发事件时,无法及时有效地作出制动措施。因此,有效解决汽车视野盲区问题,关系到汽车驾驶的安全性。如今市面上的盲区检测产品,探测精度低,易产生视觉疲劳,从而也会导致安全事故的发生。基于此团队研发了一款超声波盲区检测预警自处理系统,通过雷达探测和监控摄像头技术的融合,能够使盲区信息实时展现在驾驶员的视野范围之内,有效地解决了图像出现的失帧和变形的问题,并利用危险等级模型的检测实现报警区域影像的放大集中,有效避免了驾驶员的视觉疲劳,使驾驶员接收到视觉和听觉的双重预警,并且该模型能使汽车实现自处理功能,解决驾驶员的判断失误或紧急境况的突发应变能力不足而造成事故的问题,以最安全的方式确保盲区检测效果。
简介:摘要:如今电梯已成为人们的生活中必不可少的室内交通工具,但是近年这种交通工具因为门系统故障引起了很多人员伤亡事故。为了确保电梯安全可靠的运行,文中对电梯门系统进行了故障预测。针对电梯门系统故障类型:电梯启动门不关、电梯开关门时门扇振动大、到达指定层不开门不关门。将三种故障类型作为预测模型的输出。引起故障的原因有8个,其作为输入。运用粒子群算法(PSO)与BP神经网络相结合建立模型,通过MATLAB仿真,仿真结果表明PSO-BP神经网络算法在电梯门系统故障预测中具有可行性。