简介:提出一种基于智能电子设备(IED)的高容错性的广域后备保护算法,用于变电站间分布式广域后备保护系统。该系统根据保护范围内的故障距离I、II段信息,和故障方向信息通过容错性判别确定故障位置。该算法需要的信息量少,原理简单,可靠性高,在存在各种信息缺失、错误及通信中断情况下仍具备很好的适应性,可极大地提高后备保护系统的性能。
简介:粒子群优化(PSO)算法是智能算法的一种,有较好的全局搜索能力,已经被应用于局部阴影条件下的最大功率跟踪(MPPT)当中。但PSO算法的搜素速度慢,收敛不稳定。本文通过分析局部阴影条件下光伏阵列的输出特性曲线提出了改进型粒子群优化算法(IPSO),以变换器的占空比为粒子,初始化时将粒子均匀分散在可能的功率峰值点处,依据迭代次数线性调整惯性权重、学习因子,并通过引入反正切函数,对传统PSO算法的速度更新进行修改,以减小追踪过程的振荡,更快地找到最大功率点,提高收敛速度。最后通过仿真验证了与常规的PSO算法相比,改进的PSO算法具有跟踪速度快、动态响应波动小等特点。
简介:对含随机变量的大规模概率潮流问题,若使用Gram-Charlier级数展开式逼近随机变量的概率分布,计算量较大。建立考虑风电出力随机性和负荷波动性的概率潮流模型,并采用Edgeworth通过的Hermite正交矩阵的递推性降低级数高阶展开的计算复杂度,针对级数变换法高次项被舍去影响逼近精度的问题,采用多重线性化的方法通过对系统总有功功率的均匀划分,减小因潮流方程线性化时输入的随机变量的变化范围较大而引起的截断误差。IEEE39节点系统的算例仿真结果验证了本方法的有效性。
简介:提出了一种基于模糊优化多目标进化算法(FMOEA)的配电网故障定位新方法。FMOEA对基于排序选择的传统多目标进化算法进行改良,有效避免了其种群早熟的问题,在排序结果中引入模糊优选决策因子,得到本代个体的最终适应度值,之后再经过复制、交叉、变异和迭代等过程,直到满足终止条件得到最终的Pareto解集;最后对适用于故障定位的最优解集处理办法进行了探讨与分析,以便从最优解集中筛选出符合故障情况的唯一解。算例仿真测试针对不同的配电网系统结构,分别模拟系统单点、多点故障,以及信息完备与部分信息畸变的情况,结果表明该算法可以实现配电网故障的:有效定位,通过对比遗传算法,验证了该方法寻找全局最优Pareto解集的有效性及良好的收敛性能。
简介:该文设计了一种基于Blackfin的BF537数字信号处理器(DSP)的新型太阳能照明系统.它采用siemens公司的TC35i模块来实现无线通讯,采用BP神经网络在蓄电池的灌充阶段实现了太阳能最大功率点跟踪(Maximumpowerpointtracking,MPPT).为了解决神经网络不保证收敛的问题,在BP神经网络里还引入了遗传算法,得到遗传神经网络(GA-BP).最后通过系统的实现与测试,证明了算法的优越性和该系统的实用性.