简介:1概要铁道由电力(电车线、集电等)、车辆(转向架、车体、内装饰等)、轨道(钢轨)等多种领域组成,各领域使用各种零件。为了确保铁道车辆安全运行,必须保证零件有长期耐用的可靠性。另外,为实现零件轻量化,就必须使零件薄壁化、结构简化、采用轻型材料及零件的小型化。在此状况下,采用新材料的零件是有效方法之一,于是材料技术的重要性也日益突出。与此同时,材料技术也已在大学、企业、民营公司大力开发,开创或开发了许多新材料和加工技术。本文以电力及车辆领域为例,介绍了适用于铁道零件的金属系新材料,并展望了最近的新材料加工技术、新材料的发展前景,对加工技术的开发例进行了介绍。
简介:1990年3月20日,在日本,我们第一次将一个新的驱动系统用于大阪市第7号地下铁道线,该线命名为“NagahoriTsurumi-ryokuchi线”。这个新的驱动系统使用了由调频调压(VVVF)逆变器控制的直线感应电动机(LIM),不依靠原粘着力,也就是说车轮和轨道之间的摩擦力。为了完成这个新系统,我们花费了10多年的时间。在为减少地下铁道系统的成本而进行研究的同时,作为第一步大阪市开发了采用VVVF逆变器控制的三相鼠笼式转子感应电动机驱动的车辆并付诸实践,那就是理想的地下铁道系统。而且,在使用IAM样机驱动的车辆进行了各种实验和反复运行试验以后,这个新系统终于得已完成。在1990年,这个新的系统运送了大约800万乘客,而且作为1990年博览会(国际的花园和绿色博览会)上的主要交通工具扮演了一个很棒的角色,几乎没有毛病,现在这个新系统符合所有的要求,非常令人满意。本文介绍了LIM的技术要求和该领域数据,以及该IAM驱动车辆的技术发展过程和概况。
简介:在40‰陡坡铁道上,224t工矿电机车与150t工矿电机车运行对照,前者更具有优势。笔者就224t大轴重工矿电机车的实际运行情况提出个人观点,仅供同行参考。
简介:在传统的轨道车辆中,牵引电动机是安装在转向架构架上,轴转矩通过弹性联轴器和减速装置传送给轮对装置。减速装置为增加转矩发挥了作用,但也增加了维护工作,带来了噪声和传输损失。为了克服这些问题和简化转向架结构,我们设想了一种不用减速装置的车轮上安装的直接驱动牵引电动机系统,并正在开发中。在本系统中,要求牵引电动机产生更大的转矩和减少重量,因此我们引入了永磁同步电动机第一次用在轨道车辆上。文中我们提出了车轮上安装的直接驱动牵引电动机,和展示了一台样机的车轮安装的牵引电动机模型,该模型是作为开发的第一步试制生产的,我们通过对磁结构的分析和改进克服了永磁铁的温升问题。