简介:提出了一种填充粒子群算法(FPSO),用以解决双次级永磁同步直线电机优化设计问题。在有限元分析的基础上,采用支持向量机拟合直线电机结构参数与运行性能参数之间的关系,建立用于优化计算的非参数模型;引入填充函数,对传统粒子群算法进行改进,并采用多峰值函数对算法进行测试,结果表明:FPSO具有良好的快速性和全局收敛性;采用FPSO对电机结构参数进行优化,得到一组最优的电机结构参数。仿真实验表明:采用该算法优化后的电机推力大、推力波动小且峰值电流小,符合电机的优化设计目标。
简介:该文设计了一种基于Blackfin的BF537数字信号处理器(DSP)的新型太阳能照明系统.它采用siemens公司的TC35i模块来实现无线通讯,采用BP神经网络在蓄电池的灌充阶段实现了太阳能最大功率点跟踪(Maximumpowerpointtracking,MPPT).为了解决神经网络不保证收敛的问题,在BP神经网络里还引入了遗传算法,得到遗传神经网络(GA-BP).最后通过系统的实现与测试,证明了算法的优越性和该系统的实用性.
简介:提出一种基于智能电子设备(IED)的高容错性的广域后备保护算法,用于变电站间分布式广域后备保护系统。该系统根据保护范围内的故障距离I、II段信息,和故障方向信息通过容错性判别确定故障位置。该算法需要的信息量少,原理简单,可靠性高,在存在各种信息缺失、错误及通信中断情况下仍具备很好的适应性,可极大地提高后备保护系统的性能。
简介:粒子群优化(PSO)算法是智能算法的一种,有较好的全局搜索能力,已经被应用于局部阴影条件下的最大功率跟踪(MPPT)当中。但PSO算法的搜素速度慢,收敛不稳定。本文通过分析局部阴影条件下光伏阵列的输出特性曲线提出了改进型粒子群优化算法(IPSO),以变换器的占空比为粒子,初始化时将粒子均匀分散在可能的功率峰值点处,依据迭代次数线性调整惯性权重、学习因子,并通过引入反正切函数,对传统PSO算法的速度更新进行修改,以减小追踪过程的振荡,更快地找到最大功率点,提高收敛速度。最后通过仿真验证了与常规的PSO算法相比,改进的PSO算法具有跟踪速度快、动态响应波动小等特点。