学科分类
/ 25
500 个结果
  • 简介:摘要电力系统的谐波和间谐波问题是系统运行稳定性的主要影响因素,关于其检测方法的研究受到学界的广泛关注,并取得了一定成果。本文首先对几种电力系统谐波和间谐波检测方法进行分析,包括谐波检测中的早期方法、DFT算法、同步偏差削弱法等,以及间谐波检测中的自适应窗函数法、时域平衡法和两部检测法等。

  • 标签: 电力系统 谐波和间谐波问题 检测方法
  • 简介:摘要电力系统的谐波和间谐波问题是系统运行稳定性的主要影响因素,关于其检测方法的研究受到学界的广泛关注,并取得了一定成果。本文首先对几种电力系统谐波和间谐波检测方法进行分析,包括谐波检测中的早期方法、DFT算法、同步偏差削弱法等,以及间谐波检测中的自适应窗函数法、时域平衡法和两部检测法等。

  • 标签: 电力系统 谐波和间谐波问题 检测方法
  • 简介:结合RBF神经网络和模糊专家系统进行负荷预测.给出径向基函数(RBF)网络的结构,并采用正交最小平方法(OLS)选取RBF中心.先用RBF进行基本负荷预测,然后考虑天气变化和假日因素所引起的负荷变化,利用模糊专家系统进行负荷调整.文中把日期划分为5类.测试结果表明,该方法具有较高的精度和较快的速度.

  • 标签: 径向基函数 负荷预测 神经元网络 模糊专家系统
  • 简介:摘要智能输电网是人工智能神经网络的典型应用。其采用数据层、通信层、应用层网络结构,采用开放式的数据网络平台。交叉学科的服务商在数据网络平台进行应用层数据发掘与实现,为用户提供相互独立的产品,实现可持续的数据挖掘与应用。

  • 标签: 人工 神经网络 电网故障 诊断
  • 简介:针对小电流接地系统,本文提出了一种利用BP神经网络对行波法和暂态主频法进行融合的选线方法。该方法提取各出线初始电流行波零模分量的幅值、极性以及暂态主频的幅值、相位,利用神经网络进行融合实现故障线路的选取。该方法先利用仿真软件ATP建立仿真模型,分别对各条线路设置不同故障距离、不同过渡电阻以及不同故障初相角进行仿真,得到训练样本和测试数据,然后利用训练样本对BP神经网络模型进行训练,最后利用测试数据进行故障选线验证。仿真证明本文提出的方法能够实现小电流接地系统的选线。

  • 标签: 小电流接地系统 暂态 行波 神经网络 故障选线
  • 简介:摘要 : 对电力的需求是人们日常生活的主要生活需求之一 。在整体电力企业的管理当中,对电网进行有效的管理是中小企业主要运营的重要问题之一。从具体的应用而言,整体电网的运营与管理工作具有的较为丰富的多样性。其中对电力负荷进行有效的预测是整体电网运营工作中的重点工程之一。有效的电力负荷预测工作,能够使相关技术人员对整体电网的运行有效的调整,进而使 整体电网管理拥有更加优质的管理效果。并使整体电力企业的经济效益进一步以能源管理的方式得以提升。文章 对人工神经网络在整体电力负荷预测中的重要作用进行相应的分析,并解释其具体的应用过程,希望能够为电力管理工作提供有效的现实 性参考。

  • 标签: 人工神经网络 电力负荷预测 电网管理
  • 简介:摘要:近年来,随着传统能源的枯竭,我国开始大力发展绿色友好型的可再生能源,其中新能源光伏发电技术在我国能源发展上的重要性日益凸显。并网逆变器作为电网与光伏发电系统之间的核心接口设备,对入网电流质量具有重大影响。在实际工程中,出于保护设备的功率开关管的目的,大多场合采用逆变侧电流反馈控制,但该控制结构在数字控制下难以兼顾良好的系统动态响应能力和鲁棒性,在谐振峰附近的三次截止频率处通常存在相位裕度过低的情况,大幅放大了该频率处的高频谐波,从而不满足国家规定的并网标准。

  • 标签: 逆变器单神经元 自调节 PID电流控制策略
  • 简介:摘要单神经PID控制在工业发展过程当中有着极为关键的作用,可以有效地提升控制精度与控制范围,本文通过对于单神经自适应PID控制的分析与应用进行探讨,为其进一步发展提供了借鉴。

  • 标签: 单神经元 自适应 PID控制
  • 简介:摘要对于传统PI双闭环直流电机调速体系存在呼应速度慢、超调量大、抗干扰才能及自适应才能差等问题,提出了一种双闭环直流电机调速体系的神经PID转速调理器规划办法。该转速调理器选用神经操控器和份额操控相结合进行规划,然后构成了一种具有自学习、自适应才能的神经PID控制器,然后与传统单神经PID规划的转速调理器操控作用进行了比照。结果表明,依据神经PID转速调理器的双闭环直流电机调速体系具有较快的呼应速度、杰出的动态和静态稳定性、较强的自适应才能和抗干扰才能。

  • 标签: 直流电机 神经元PID 调速体系规划 仿真
  • 简介:摘要设计了具有参数自整定、最优化功能的改进型神经PID控制器,并应用到PMSM控制系统的设计中。最后利用MATLAB/SIMULINK建立了系统仿真模型,仿真试验表明相比于神经PID控制,改进后的控制策略可显著提高系统快速性、精确性和鲁棒性。

  • 标签: 神经元PID控制器,二次型性能指标,永磁同步电机,控制策略
  • 简介:摘要:在供电公司负荷预测中,企业用户的电力需求预测精确度对整个地区的负荷预测至关重要,能使负荷预测更加细化、精确化,从而利于电能供给平衡。然而近年来,人工智能方法用于用电需求的预测上,仍存在网络参数容易陷入局部最优的问题。基于此,以璧山城区646户高压企业客户,连续23个月的用电量为数据源,对其进行数据挖掘、聚类分析、预测,根据不同企业用电习惯及特点,挖掘数据特征向量,基于RBF人工神经网络建企业日用电量的预测模型,并与BP神经网络企业日用电量预测模型进行对比测试,基于RBF神经网络算法的企业日用电量模型精确度高达90%。

  • 标签: 企业日用电量 RBF人工神经网络 聚类分析 精确度
  • 简介:摘要对于传统PI双闭环直流电机调速体系存在呼应速度慢、超调量大、抗干扰才能及自适应才能差等问题,提出了一种双闭环直流电机调速体系的神经PID转速调理器规划办法。该转速调理器选用神经操控器和份额操控相结合进行规划,然后构成了一种具有自学习、自适应才能的神经PID控制器,然后与传统单神经PID规划的转速调理器操控作用进行了比照。结果表明,依据神经PID转速调理器的双闭环直流电机调速体系具有较快的呼应速度、杰出的动态和静态稳定性、较强的自适应才能和抗干扰才能。

  • 标签: 直流电机 神经元PID 调速体系规划 仿真
  • 简介:摘要将人工神经网络(ANN)技术引入磨削加工领域,研究预测切向磨削力和法向磨削力,来提高磨削力的预测精度。以多层前反馈神经网络为基本结构,以误差逆传播算法(BP算法)为网络的训练方法。通过分析,以砂轮速度vs、工件速度vw和磨削深度ap为输入,以切向磨削力Ft和法向磨削力Fn作为网络输出,选定网络的层数、隐含层神经个数、训练函数、传递函数等内容,建立预测磨削力的BP神经网络模型。然后比较不同网络模型,来确定最优的预测模型。

  • 标签: 磨削力 砂轮速度 工件速度 磨削深度 BP神经网络
  • 简介:摘要网络性能预测是指以现有理论等为基础,来构造具有预测性的模型以实现对未来业务数据的推测和估计。本文按照电力营销系统的特殊架构,建立了基于神经网络的电力营销系统网络性能预测模型,构建了电力营销系统的网络特征信息集,并设定了网络性能预测的信息过滤规则。此外,基于构建的电力营销系统网络预测模型,进一步研发了电力营销系统流量过滤模块。通过OPNET网络仿真结果显示,基于神经网络的电力营销系统网络性能预测模型能够有效降低网络阻塞,提高网络使用效率。

  • 标签:
  • 简介:摘要卷积神经网络在自然语言处理中的应用是近年的研究热点。文章通过对几项典型工作的分析,研究了卷积神经网络在各项自然语言处理任务中的性能与效果。并对卷积神经网络语言模型的改进规律进行了总结。

  • 标签: 卷积神经网络 语言模型 分析
  • 简介:

  • 标签:
  • 简介:摘要利用传统的单端电压、电流电气量进行故障测距时,容易受到过渡电阻的影响而导致测量距离不精确。本文以小波变换为基础,将传统的单端电气量与反向传播(BP)神经网络算法相结合,提出了一种用于故障测距的新方法,通过大量的仿真验证表明,该方法能够适应各种环境的要求,且精度高,具有一定的实用价值。

  • 标签: 小波变换 反向传播神经网络算法 过渡电阻 故障测距
  • 简介:摘要随着我国经济的快速发展,社会在不断的进步,针对风力发电并网时所产生的电流冲击与波动过大的问题,文中基于其运行特性与控制原理,提出了一种基于神经网络的风力发电并网控制技术。该技术结合了BP神经网络与PID控制,使得控制器能够对转子电流进行控制,具有独立于被控对象的优点。加之双馈发电机,因而可以实现空载数学模型的并网控制。通过与传统控制技术比较可知,文中所提出的技术算法简单、响应速度快且精度高,能较好地控制电网电压波动,具有一定的有效性。

  • 标签: 风力发电 神经网络 PID控制 双馈发电机
  • 简介:摘要近年来风能已成为全球最重要的清洁型能源,风电场输出功率的预测也越发的成为了世界关注的焦点。但对于预测方法的研发目前还不够完善,仅仅依靠天气数值预报的预测是不够的。因此本文提出了神经网络模式下的风力发电机输出功率预测,并对风力发电机输出功率预测模型的建模过程进行了全面的阐述。经实验结果得出以下结论即在神经网络模式下,以风能作为动能的风力发电机,其输出功率的预测准确度非常高,具有可行性和有效性。

  • 标签: 功率预测 风电场 神经网络
  • 简介:提出了基于神经网络的被测量重构方法;针对神经网络中误差反向传播算法收敛速度慢的问题对目标函数等三方面进行了改进,将改进的多层前向网络、误差反向传播算法用于被测量重构。在实际的测量系统中,进行了仿真研究,结果表明,神经网络用于被测量重构,方法是可行的;解决了重构之前建立数学模型问题和多影响量情况下的被测量重构问题。

  • 标签: 被测量重构 神经网络 方法