简介:将分支前馈神经网络(BFNN)运用于数字字符的模式识别问题中,其某些性能优于标准反向传播(BP)网络。BFNN的隐层神经元与输出神经元之间为分组对应关系,采用的学习算法与标准BP算法类似。BFNN可以根据样本的可分性构建最适宜的网络结构。在对大规模、分类复杂的样本进行识别时,性能优于标准BP网络。
简介:将Hilbert-Huang变换(HHT)算法和Prony算法相结合进行电力系统低频振荡模式识别。利用HHT算法对实测信号进行经验模态分解,使之分解成处于不同频率的固有模态函数(IMF);然后根据Hilbert变换,分析IMF分量的频率和相位,提取出含主导低频振荡模式的IMF;利用Prony算法对含低频振荡模式的IMF进行分析,提取出低频振荡模态参数,准确识别低频振荡模态。通过算例分析,证明了该方法可提高模态识别的精确性,验证了提取低频振荡模态参数的有效性。
简介:针对无线传感器节点能耗不均的问题,研究了一种多特征组合加权的K一means聚类算法.改进了传统K一means算法中聚类中心随机选择的问题,并针对各维度特征对聚类影响的不同,赋予不同特征不同的权值.采用新的算法,并为其构建对应的算法性能衡量指标,与已有算法相比,新算法效果较好,能够明显提高数据聚类效果.