学科分类
/ 1
2 个结果
  • 简介:风电场的安全运行需要风电功率预测具有较高的精度。尽管支持向量机(SVM)理论在解决预测数据非线性等方面有较大优势,但SVM的参数难以选取。采用人工蜂群算法(ABC)对SVM中的参数进行寻优并对风电功率进行预测,将仿真预测结果与标准SVM预测结果进行对比,结果证明该方法提高了预测精度。

  • 标签: 支持向量机 风力发电 功率预测 人工蜂群算法
  • 简介:采用MATLAB的人工神经网络工具箱,以高锰铝青铜的化学成分作为输入参数,其抗拉强度bσ、屈服强度0σ.2和延伸率δ作为输出,建立了材料的力学性能预测模型。计算结果表明,三项输出的预测值与实测数据接近,其相对误差小于±6%的范围,该模型对其他材料的设计生产具有一定的指导意义。

  • 标签: 人工神经网络 力学性能 预测