简介:利用地球同步轨道合成孔径雷达(SAR)卫星对地覆盖范围广、轨道周期短等特点,结合波束控制技术可以实现对热点地区的长时间持续观测,即地球同步轨道SAR(GEOSAR)凝视成像。对于GE0SAR凝视成像系统而言,由于轨道高度大大提高,地球自转效应和地表曲率的影响更加显著,在对目标的持续观测过程中,分辨性能变化较大,甚至存在无法二维分辨的观测位置。为了保证卫星资源的利用率,需要通过轨道参数的优化设计,获得更长的二维高分辨观测时间。通过引入俯仰角,对传统成像几何模型加以改进,并推导了适用于GEOSAR的二维分辨率表达式。利用该表达式,分析不同观测位置的二维分辨效果,计算不同轨道参数设计对应的有效观测时长,并结合二维联合搜索的方法完成轨道参数优化。仿真结果说明该轨道参数优化流程可以为GEOSAR凝视成像系统提供有效的轨道参数设计方案。
简介:研究了高分辨极化雷达目标识别问题,给出了瞬态极化Wigner-Ville分布(WVD)的定义,提出了基于瞬态极化WVD相关的目标识别方法,以充分利用目标回波的极化信息,并且揭示了该方法的性能改善与目标回波极化散度之间的关系.最后利用五种飞机缩比模型外场测量数据进行了目标识别实验.实验结果表明,该方法是一种有效的高分辨极化雷达目标识别方法.
简介:在对近地空间目标进行预警跟踪时,雷达发射的电磁波会在电离层中传播,电离层作为磁化等离子体,会导致电磁波产生Faraday旋转,从而对雷达探测性能造成影响。通过数值计算的方式,仿真了Faraday旋转效应导致的雷达极化失配损耗,并对仿真结果进行了分析。通过仿真结果可以看出:太阳活动高年,Faraday旋转角比太阳活动低年大;雷达工作频率越高,受Faraday旋转影响越小;目标仰角较低时,线极化失配损耗较小;椭圆极化方式下,极化失配损耗随椭圆轴比增大而增大;用圆极化方式可以最大程度地减小由Faraday旋转导致的雷达探测性能降低。