学科分类
/ 1
1 个结果
  • 简介:Theapplicationofdataenvelopmentanalysis(DEA)asamultiplecriteriadecisionmaking(MCDM)techniquehasbeengainingmoreandmoreattentioninrecentresearch.InthepracticeofapplyingDEAapproach,theappearanceofuncertaintiesoninputandoutputdataofdecisionmakingunit(DMU)mightmakethenominalsolutioninfeasibleandleadtotheefficiencyscoresmeaninglessfrompracticalview.ThispaperanalyzestheimpactofdatauncertaintyontheevaluationresultsofDEA,andproposesseveralrobustDEAmodelsbasedontheadaptationofrecentlydevelopedrobustoptimizationapproaches,whichwouldbeimmuneagainstinputandoutputdatauncertainties.TherobustDEAmodelsdevelopedarebasedoninput-orientedandoutputorientedCCRmodel,respectively,whentheuncertaintiesappearinoutputdataandinputdataseparately.Furthermore,therobustDEAmodelscoulddealwithrandomsymmetricuncertaintyandunknown-but-boundeduncertainty,inbothofwhichthedistributionsoftherandomdataentriesarepermittedtobeunknown.TherobustDEAmodelsareimplementedinanumericalexampleandtheefficiencyscoresandrankingsofthesemodelsarecompared.TheresultsindicatethattherobustDEAapproachcouldbeamorereliablemethodforefficiencyevaluationandrankinginMCDMproblems.

  • 标签: 数据包络分析模型 多准则决策 基础 随机不确定性 DEA方法 DEA模型