简介:采用厚20μm的非晶态Ti-Zr-Ni-Cu钎料,真空钎焊连接用于聚变堆面向等离子体部件的钨和铜铬锆合金,钎焊温度分别为860、880和900℃,对880℃下的钎焊样品进行热等静压(HIP)处理。采用SEM和EDS分析连接接头的形貌和成分,用静载剪切法测量焊接接头强度。测试结果表明在860~880℃下钎焊10min能够获得较好的连接界面,经880℃钎焊后焊接接头的剪切强度为16.57MPa,880℃钎焊后HIP处理的试样界面结合强度提高至142.73MPa,说明真空钎焊后HIP处理可以显著改善接头的结合强度。
简介:微电子封装材料要求具有高热导率和特定的热膨胀系数。钨铜二元假合金系列材料是可选材料之一。根据特别的热物理性能要求设定和钨铜合金各种工艺的组织结构特点,可确定具有理想且稳定的热物理性能的材料组织结构应为二元连续液相烧结组织,即以钨颗粒为骨架,主导CTE值的变化,铜液相凝固态连续地分布在间隙和烧结颈侧隙。要获得这种组织、对工艺和性能控制将有更苛刻的要求。作者根据金属合金及复合材料性能理论,针对钨铜二元合金的互不溶性特点、二元素的弱交互作用,运用组织结构模型和建立理论热物理模型,用于计算和预测二元系合金热物理性能的变化趋势和范围,以图对该合金的成分和性能设计与控制提供初步的理论依据。
简介:Al-Zn-Mg-Cu系超强铝合金因为高强度和高韧性,已作为轻质高强结构材料广泛应用于航空航天领域。该文主要介绍国内外高强铝合金的发展历程及最新研究进展,指出Al-Zn-Mg-Cu超强铝合金的研究经历了高强低韧→高强耐蚀→高强高韧耐蚀→超强高韧耐蚀4个发展阶段,认为调控晶界结构及晶界析出相状态已成为目前铝合金研究的重点;简要评述微观组织和晶界结构对超强铝合金性能的影响,并介绍超强铝合金弥散相和形变—热处理工艺的研究现状及其调控晶界结构和晶界析出相状态的原理。最后指出寻找新型弥散相和开发新型的形变—热处理工艺是提高超强铝合金性能的重要发展方向和途径。
简介:陶瓷与金属连接具有重要的工程应用背景,然而却面临诸多技术难关,连接件的热应力缓解便是其中之一。本文作者采用弹性有限元方法,对采用不同材料作为中间层得到的实际连接尺寸的SiC陶瓷与Ni基高温合金连接件的应力进行计算,并结合各种材料的塑性对连接件的应力进行定性分析。计算结果表明,SiC陶瓷与Ni基高温合金直接连接产生的热应力很大。最大轴向拉应力位于陶瓷近缝区,导致连接件强度偏低或断裂。采用功能梯度中间层或软金属中间层能在一定程度上缓解热应力;硬金属中间层虽然不能缓解应力,但能改善应力分布状态,使最大轴向拉应力迁移出比较薄弱的陶瓷一侧,有利于连接强度的提高;采用软、硬金属复合中间层具有较好的缓解应力和改善应力分布的效果,但却较多地增加了连接件的界面,有可能导致负面效应,在实际工程应用中需要根据具体情况,权衡利弊,综合考虑。
简介:对7B50铝合金热轧板在460~490℃范围内进行固溶处理、室温水淬及人工时效,通过室温力学性能测试、慢应变速率拉伸实验及电导率测试,结合光学显微镜,扫描电镜和能谱分析,研究固溶温度对Al-Zn-Mg-Cu铝合金组织与应力腐蚀的影响。结果表明,提高固溶温度能有效减少残留相,增加再结晶的体积分数。当固溶温度从460℃提高到490℃时,屈服强度(σ0.2)和抗拉强度(σb)分别提高20.9%和23.5%,固溶温度从480℃升高到490℃时,强度变化不大,但随着固溶温度升高,伸长率先提高后降低,抗应力腐蚀性能先升高后降低。当固溶温度为480℃时,应力腐蚀敏感性最低,综合性能较好。残留相增多和再结晶程度提高是引起应力腐蚀敏感性提高的主要原因。在腐蚀溶液中,应力腐蚀断口形貌为典型的沿晶断裂。
简介:以Ti-Al的3个化合物相(Ti3Al、TiAl和TiAl3)及Ti3Al8Mn为对象,采用密度泛函的赝势平面波法,在优化驰豫的基础上计算其电子结构和弹性模量,系统分析成分对各相电子结构的变化及脆性的影响。结果表明:Al含量逐步增多导致Al2p—Ti3d成键并抑制Ti—Ti键,使共价键以及成键的各向异性增强,因而使合金脆性增大;Mn替代Al位掺杂后,可减少Al—Al共价键,抑制Al2p—Ti3d成键并增强Mn与Ti的3d电子层杂化程度,降低由Al—Al共价键和Al2p—Ti3d杂化键形成所带来的键的空间各向异性和高位错能垒,进而改善合金的室温脆性。
简介:针对Al-Zn-Mg-Cu系铝合金热处理工艺中存在的不足,提出固溶-降温析出-再固溶的三级固溶热处理工艺,通过金相显微镜和扫描电镜(SEM)分析以及硬度、电导率、腐蚀剥落性能测试,研究三级固溶处理对Al-Zn-Mg-Cu系铝合金锻件的微观组织及剥落腐蚀行为的影响。结果表明:三级固溶处理可使晶界析出相明显粗化、离散度增大。同时,三级固溶处理可使Al-Zn-Mg-Cu系铝合金抗剥落腐蚀性能得到明显改善,抗拉强度仍能保持在610MPa左右;与常规固溶相比,该合金经三级固溶+峰值时效处理后的电导率由30.8%(IACS)提高到33.2%(IACS),抗剥蚀等级由EB^+提高为EA。