简介:为研究钨合金粉末热等静压(HIP)的致密化行为,采用MSC.Marc中的Shima模型针对93W-4.45Ni-2.2Fe-0.3Co-0.05Mn穿甲弹常用材料的热等静压成形过程进行模拟研究,分析钨合金粉末颗粒与包套随温度、压力加载的变化过程。为验证数值模拟的结果,进行热等静压工艺试验。结果表明:压坯的相对密度分布、变形趋势与实验结果符合得较好,径向周长误差最大,相对误差为5.6%,轴向相对误差为1.62%,轴向精度优于径向,致密度平均相对误差仅为1.4%。对于简单的柱状试件,采用数值模拟的方法可以形象、准确地预测包套的变形及粉末的致密化过程,数值模拟的方法可以为复杂结构包套的研究提供参考,从而实现热等静压过程的精确控形。
简介:热等静压(HotIsostaticPress,HIP)技术是在惰性气氛中,在各向均衡的气体高压力及高温共同作用下,去除材料内部的孔洞及缺陷,以改善机械性质、使粉末材料及表面蒸镀物具一致性、通过扩散键结(diffusionbonding)改善焊接完整性等。热等静压适用于多种材料及器件,特别是铝合金、工具钢、钛、超合金以及蒸汽涡轮零件、医学植入件、自动化铸件、靶材与粉末冶金制品等。考虑到近年来随着高密度、高传输速率光储存媒体及平面显示器的发展,靶材的研究与开发,巳成为光学薄膜制造的关键技术,该文作者以热等静压方法改善金属靶材,比较热等静压前后靶材性质差异和论证批量生产的可行性;并探讨热等静压处理对靶材性质的影响、比较其显微结构变化,以评估热等静压改善金属靶材材之可行性。研究结果显示,利用l100℃,175MPa,4h热等静压的制备流程条件,对3种不同成分配比之Cr-Si热压靶材进行热等静压处理,均可有效改善孔隙率,其中以50Cr-50Si的热等静压效果最为显著,孔隙率可有效降低60%。此外,靶材在经过热等静压后,由于炉内气体的纯化效应而使得靶材的氮、氧浓度皆有所上升,尤其是Si以单独元素形态存在时更甚,从而造成靶材纯度受到影响。
简介:采用冷等静压法(coolisostaticpressing,CIP)制得大尺寸钼骨架,对骨架进行渗铜制备Mo-30Cu合金,并在350℃进行温轧,研究CIP压力及熔渗温度和熔渗时间对合金致密度的影响以及合金的轧制性能。结果表明:采用冷等静压法在120~180MPa压力下可制备孔隙分布均匀,无分层等缺陷的钼骨架,熔渗后坯料的线收缩率随CIP压力增加而逐渐降低,最佳CIP压力为160MPa;在一定范围内升高熔渗温度与延长保温时间均有助于提高合金致密度;冷等静压–溶渗法制备的高致密Mo-30Cu合金具有较好的温轧性能,有效提高了大尺寸试样的加工性能。CIP压力为160MPa压制的骨架在1350℃渗铜6h后相对密度达到99%以上,合金的温轧变形量可达到65%。
简介:采用机械球磨和热等静压(hotisostaticpress,HIP)相结合的方法制备NbC颗粒增强45CrMoV弹簧钢基复合材料(NbCp/45CrMoV),观察该材料的显微组织、增强颗粒分布和界面结合情况,检测其相对密度、硬度、拉伸性能和摩擦磨损性能,并探讨其断裂行为和磨损机理。结果表明,NbCp/45CrMoV复合材料的组织均匀细小,NbC颗粒均匀地弥散分布在基体之中,且与基体界面结合良好,相对密度达到99%以上。与45CrMoV弹簧钢相比,该材料的硬度和弹性模量增大,分别为44HRC和208GPa,抗拉强度略有降低,为1250MPa;伸长率由11%减小到2%;耐磨性能大幅提高,特别是在高载荷下,例如700N时,质量磨损只有HIP45CrMoV的1/4,摩擦因数有所增大。
简介:采用反应磁控溅射法分别在单晶硅(100)和不锈钢基底上沉积不同W含量的Zr1-xWxN(x=0.17,0.28,0.36,0.44,0.49)复合膜,利用扫描电镜、能谱仪、X射线衍射仪、纳米压痕仪和摩擦磨损试验机研究该复合薄膜的微结构、力学性能及摩擦性能,并探讨ZrWN复合膜的摩擦机理。结果表明:当x≤0.28时,复合膜呈fcc(Zr,W)N结构;当x为0.36~0.44时,复合膜呈fcc(Zr,W)N和fccW2N结构;当x=0.49时复合膜为fcc(Zr,W)N、fccW2N结构和β-W单质。Zr1-xWxN复合膜的硬度随x增加先增大后减小,当x=0.44时达到最大值,为36.0GPa。随x增加,Zr1-xWxN复合膜的室温摩擦因数先减小后增大,摩擦表面生成的氧化物WO3对于降低摩擦因数起重要作用。
简介:以Fe、Al元素混合粉末为原料,采用粉末冶金法,通过偏扩散/反应合成—烧结,制备Fe-Al金属间化合物多孔材料。根据烧结前后多孔试样的质量变化,并结合XRD、SEM、EDS等测试手段,对烧结过程中多孔试样基础元素挥发行为及孔结构变化进行研究。结果表明,真空烧结元素粉末制备Fe-Al多孔材料过程中,最终烧结温度为1000℃、保温4h时,Fe-Al多孔试样质量损失率为0.05%,而最终烧结温度为1300℃时质量损失率达到10.53%;随着最终烧结温度升高,合金元素沿孔壁表面挥发程度增大,导致Fe-Al多孔试样的孔径、开孔隙率和透气度变大。采用MIEDEMA模型和LANGMUIR方程,对真空烧结过程中的质量损失原因进行理论分析,表明Al的挥发是导致多孔试样的质量和孔结构变化的主要原因。
简介:将NH4HCO3加入到10g706硅橡胶粘合剂中,添加气相SiO2作为补强剂,制备氨气缓释材料。研究气相SiO2的用量(0~2.5g)和NH4HCO3的用量(0.1~1.0g)、温度(20~40℃)及物料捏合时间对氨气释放速率的影响,采用扫描电镜(SEM)观察缓释材料的显微形貌。结果表明,当室温硫化硅橡胶粘结剂为10g,气相SiO2加入量为2g、捏合时间为1h时,材料的缓释性能优异。气相SiO2加入量越大,则材料硬度越高、变形越困难,缓释性能越好,氨气从材料中释放的速率也小。NH4HCO3加入量越小,氨气释放的速率越慢,缓释效果越好;温度越低,材料缓释效果越好。
简介:以硝酸铟为原料,用氨水做沉淀剂,采用水解沉淀-水热法制备In2O3的前驱体In(OH)3,用扫描电镜、X射线衍射仪及激光粒度分析仪对产物的结构、形貌和粒度进行表征。结果表明,水解沉淀产物为立方相In(OH)3,呈短棒状团聚体。水热处理过程中,产物的晶型、形貌和粒度受Ostwald熟化机制和相转化机制的影响。当水热温度低于280℃时,首先发生Ostwald熟化机制,In(OH)3颗粒形貌由短棒状转变为长方体,而物相不发生变化。当水热温度高于280℃时,除发生Ostwald熟化机制外,还存在相转化机制,产物形貌先由棒状转变为长方体,接着转变为多面体,且物相由立方相的In(OH),转变为斜方相的InOOH。
简介:采用粉末注射成形工艺制备含钕的钛合金TixNd(x为Nd的质量分数,%),采用金相显微镜、扫描电镜、电子探针以及硬度和力学性能测试等分析手段,研究钕对注射成形钛合金中氧的分布及力学性能的影响,并分析钕的最佳添加量。结果表明:随钕含量增加,合金的密度和伸长率先增加后降低,其中Ti15Nd的性能最优异,其相对密度为98.2%,强度和伸长率分别达到634MPa和6.5%,比纯钛分别提高248MPa和6.5%。纯钛的断裂面呈现解理断裂特征,而Ti15Nd为延性断裂。添加钕能提高钛合金的致密度,并且钕能吸收周围钛基体中的氧原子形成氧化钕,调节TixNd合金中氧的分布,从而有效提高合金的强度和韧性。计算证明氧化钛的分解和氧化钕的形成在热力学上是可行的。建立Ti-Nd扩散模型,考虑钕的蒸发和氧化等因素,计算得出钕的最佳添加量(质量分数)约为4.3%。