学科分类
/ 1
13 个结果
  • 简介:羟基磷灰石由于具有良好的生物相容性和生物活性而应用广泛,形貌控制对其应用至关重要。本文分别以Ca(NO3)2·4H2O、KH2PO4·3H2O为Ca源和P源,采用水热法制备不同形貌的羟基磷灰石。用X射线衍射(XRD)和扫描电镜(SEM)对反应产物进行表征,研究水热反应温度、水热反应时间和反应物浓度对羟基磷灰石形貌的影响。结果表明,不同条件下,产物为长径比不同的片状、带状及花状羟基磷灰石(HA),其长度为1-100μm、宽1-5μm、厚约100nm、长径比为1-100,并从晶体生长动力学方面探讨不同合成条件对羟基磷灰石形貌的影响机理。

  • 标签: 羟基磷灰石 水热法 形貌控制 长径比
  • 简介:采用粉末冶金法,制备纳米SiO2颗粒(n-SiO2)、纳米SiC晶须(n-SiCw)和碳纳米管(CNTs)3种不同形态纳米相增强铜基复合材料,通过光学显微镜(OM)、扫描电镜(SEM)和球/盘式摩擦磨损试验机等测试手段研究纳米添加相对铜基复合材料显微组织、物理性能和摩擦学性能的影响。结果表明,纳米相可以显著提高铜基复合材料的硬度,其中n-SiCw的增强效果优于n-SiO2和CNTs;CNTs/Cu的减摩耐磨效果优于SiO2/Cu和SiCw/Cu;0.75%-CNTs/Cu(质量分数)复合材料具有高的硬度、优良的减摩耐磨性能,是综合性能最佳的复合材料。

  • 标签: 纳米相 复合材料 摩擦磨损 粉末冶金
  • 简介:采用机械合金化—低温表面氧化—高温氧化—还原处理制备MgO弥散强化铁粉后再经放电等离子(SPS)烧结制备MgO弥散强化铁基材料,并通过SEM和EDS对材料的组织和断口进行分析。结果表明:添加MgO能够细化晶粒,并均匀地分布于基体中,MgO颗粒尺寸200nm~1μm。添加MgO强化后,材料的拉伸断口由粗大的韧窝变成细小的等轴韧窝;MgO弥散强化铁基材料烧结体的室温力学性能得到有效提高,Fe+1.0%MgO的抗拉强度为342.6MPa,屈服强度为276.3MPa,硬度为61HRB,相对于纯铁分别提高了20.5%、54.2%和84.8%。

  • 标签: 内氧化 氧化物弥散强化 固溶体 氧化镁
  • 简介:超细粉体随其颗粒粒度减小,自发团聚趋势更加明显。改善粉体的分散性是实现超细粉体分级的前提,也是实现工业化应用的关键。论文作者探讨了粉体团聚和分散的作用机理,分析、比较了超细粉体在空气中和液相中的分散方法及适用范围,认为对于粒径≤2μm的超细粉体,因颗粒间的范德华引力比重力大几百倍,因而不会因重力而分离,只宜采用在液相中分散的方法使之分散,其分散途径有:通过改变分散相与分散介质的性质来调控HAMAKER常数,使其值变小,颗粒间吸引力下降;调节电解质及定位离子的浓度,促使双电层厚度增加,增大颗粒问的捧斥力;选用与分散颗粒和分散介质均具有较强亲和力的聚合物电解质,通过空间位阻和静电协同作用来达到优异的分散效果。

  • 标签: 超细粉体 分散 团聚
  • 简介:运用MATLAB图像处理,采用Lacey指数算法及综合分析方法作为混合评价指标,对回转滚筒3组元颗粒混合机理及混合质量进行分析,结果表明:3组元颗粒混合过程中扩散混合在对流混合、对流与剪切混合共同作用、剪切混合3个阶段均起重要作用;大颗粒分布成花瓣形,花瓣形态及数量与填充率、倾角及转速均有关系;颗粒混合质量随各影响因素变化呈现出规律性变化,且与颗粒混合度所呈现的规律相异;该实验最佳工况为16.7%填充率、无倾角、3.4r/min。

  • 标签: 回转滚筒 3组元颗粒 混合机理 混合质量
  • 简介:采用无压熔渗工艺制备1种新型的具有自润滑耐磨性能的炭纤维整体织物/炭-铜(C/C-Cu)复合材料,分别在环-块运动模式、销-盘运动模式和往复运动模式下对该材料的摩擦磨损特性进行研究,并与粉末冶金方法制备的滑板用C/Cu复合材料进行性能比较。结果表明:C/C-Cu复合材料在不同试验模式下表现出迥异的摩擦磨损特性。往复运动模式下试样表面形成完整光滑的磨屑层,摩擦因数和磨损量均分别维持在0.02和1.70mm3的较低水平,摩擦磨损性能优于C/Cu复合材料;环-块模式下试样磨损面粗糙,摩擦因数最高,达到0.25以上,磨损量最低,仅为0.75mm3与C/Cu复合材料的摩擦磨损性能相当;销-盘模式下试样的磨损量远高于其它2种摩擦模式,最高达55mm3,摩擦磨损性能比C/Cu复合材料差。

  • 标签: C/C-CU复合材料 熔渗 摩擦磨损特性 试验模式
  • 简介:用MSC.Marc软件模拟了在3种不同装粉方式下钛粉压制成形过程中粉末的流动情况以及压坯的密度分布规律.研究结果表明:装粉方式对粉末压制过程及压坯密度具有较大的影响,与平式装粉方式相比,采用凸式装粉,试样的烧结坯密度提高6%,孔隙分布的均匀性得到相应的改善.

  • 标签: 钛粉 粉末压制 数值模拟 装粉方式
  • 简介:利用具有平行流进液装置的新型电解槽,在电解液总流量为18L/min条件下,采用不同的进液模式制备电解铜粉,研究电解液进液方式对槽电压、电流效率、电解能耗和铜粉性能的影响,对电解法制备铜粉的节能降耗进行探索。结果表明,采用传统进液方式时能耗为3.01×10^6kJ/t,电流效率为94.42%,铜粉粒度为3.47μm,粒度分布集中;采用传统进液协同阴极双侧平行进液的方式能有效地降低电解过程的槽电压和电解能耗,并且随双侧平行进液流量增大,电流效率增加,能耗下降,但铜粉粒度增大。当双侧平行进液的喷液口流量为6L/min时较合适,电解能耗较低,为2.55×10^6kJ/t,铜粉的平均粒度为4.65μm,95%以上的铜粉粒度小于7.2μm,且铜粉具有明显的树枝状结构,与传统电解得到的铜粉性质相比没有明显差别;当喷液口流量进一步增大至9L/min(即单独采用双侧平行喷液方式)时,电解能耗进一步下降至2.17×10^6kJ/t,电流效率提高至96.95%,但铜粉粒度增加至45.76μm,且粒度分布出现明显的分级。

  • 标签: 电解铜粉 新型电解槽 电流效率 电解能耗 铜粉粒度
  • 简介:利用分离式Hopkinson压杆(splithopkinsonpressurebar,简称SHPB)技术对T6时效态2195铝锂合金帽型试样进行动态加载获得绝热剪切带(adiabaticshearband,ASB),利用透射电镜(TEM)和光学显微镜(OM)观察动态加载前后剪切带的微观结构特征,利用电子背散射衍射(EBSD)分析合金在100~400℃温度下退火后绝热剪切带微观结构的变化,研究剪切带纳米结构的热稳定性。结果表明:在动态加载过程中,帽型试样的剪切区域形成绝热剪切带,剪切带的晶粒为50~100nm左右的纳米等轴晶,在绝热剪切形变过程中析出相已完全溶解于基体中,纳米晶内部和晶界不存在析出相。在不同温度下退火时,剪切带的晶粒随温度升高而长大,100~200℃温度下退火后晶粒未发生显著长大,在300℃退火后晶粒急剧长大到0.22μm,400℃退火后晶粒尺寸为1.77μm;在300℃左右温度下剪切带的硬度显著下降,此温度正是剪切带纳米晶粒急剧长大的临界温度。

  • 标签: 2195铝锂合金 绝热剪切带 纳米结构 热稳定性
  • 简介:采用真空热压烧结法,以Fe基元素混合粉末和MBD。人造金刚石为原材料,通过改变工艺参数,制备锯切花岗岩用Fe基孕镶金刚石锯片磨头。采用SEM、XRD、布氏硬度仪、万能力学试验机和MRH-3销盘式摩擦试验机研究不同烧结工艺制备的磨头结构、力学性能和摩擦磨损行为。结果表明:提高烧结温度或烧结压力可使磨头胎体合金化程度增大,金刚石和胎体由机械包镶变为冶金结合,力学性能得到提高。与680℃/15MPa/4min和760℃/23MPa/4min烧结工艺相比,760℃/15MPa/4min工艺所得磨头胎体与金刚石具有最佳的耐磨匹配性和界面结合特性,摩擦磨损性能最好。

  • 标签: Fe基孕镶金刚石磨头 耐磨匹配性 界面结合 摩擦磨损 磨损机理
  • 简介:采用粉末冶金法制备了2种金属陶瓷,通过X射线衍射和扫描电镜(SEM)分析发现:金属相添加方式(尤其是Al的添加方式)对陶瓷的结构和组成有较大的影响,当Al以单质形式加入时,它会改变原有尖晶石的成分,形成新的尖晶石,同时,还会导致各金属元素的局部分布不均匀现象;合金化后Al的扩散得到了较好的控制,并没有改变原有陶瓷成分.2种金属陶瓷中的陶瓷相在高温烧结中都存在不稳定性,出现了离解现象.金属含量不同,金属陶瓷中陶瓷相和金属相的烧结机理也不同.

  • 标签: 金属陶瓷 尖晶石 离解 合金化
  • 简介:采用在还原碳化法制备WC粉末前添加稀土氧化物Y2O3或CeO2,以及在WC与Co粉末混合球磨时加入该稀土氧化物两种不同方式,在WC-10Co硬质合金中添加稀土元素,利用金相显微镜和扫描电镜观察稀土硬质合金的组织形貌与显微结构,采用X射线衍射仪(XRD)和电子探针对合金的相成分与微区成分进行分析,并测试合金的硬度、断裂韧性与磁性能,研究稀土及其添加方式对硬质合金结构与性能的影响。结果表明,无论以何种方式添加Y2O3或CeO2,最终制备的硬质合金中稀土元素都与氧共存,并以球形颗粒的形式弥散分布于硬质合金的钴粘结相中。稀土硬质合金中WC晶粒球化趋势明显,WC/WC的邻接度由0.6降低至0.39,断裂韧性由12.8MPa?m1/2提高至16.7MPa?m1/2。球形、弥散分布的稀土氧化物颗粒会破坏合金结构的连续性,导致合金强度降低。

  • 标签: 稀土 硬质合金 显微结构 邻接度
  • 简介:研究不同温度下,并流和分步加料方式对葡萄糖还原法制备的氧化亚铜形貌及粒度的影响。结果表明:采用并流加料制备氧化亚铜,其粒度随温度升高而减小,而分步加料方式与之相反。采用NaOH和C6H12O6溶液并流加料方式下,所得氧化亚铜为晶粒直径10~30nm的规则球形颗粒,反应温度对形貌影响不大,且粒度随温度升高而减小;而分步加料方式下,50℃所得氧化亚铜颗粒形貌为类球形;随温度升高逐渐转变为立方堆积体,但颗粒粒度却随温度升高而增大。

  • 标签: 加料方式 氧化亚铜 形貌 制备