简介:以北京顺义汉石桥湿地自然保护区中水处理厂的潜流湿地为例,选取2014~2015年的水质监测数据,以电导率、溶解性固体总量、氧化还原电位、pH、水温和总输入氮含量为输入层,比较遗传算法优化的BP神经网络模型和广义回归神经网络模型对多处理单元潜流湿地出水中的总氮含量预测能力。研究结果表明,遗传优化的BP神经网络模型的拟合优度R2可达到0.835,平均相对误差百分比为12.89%,说明其对出水中的总氮含量有一定的预测能力,但精度较差;广义回归神经网络模型的平均相对误差百分比为4.46%,精度较高。利用广义回归神经网络模型对潜流湿地出水中的总氮含量进行预测较适宜。