简介:根据美国国家冰雪数据中心(NSIDC)发布的2012年全球冰川分布数据等资料,选取青藏高原冰川分布较集中的地区作为研究区,利用1995年、2005年和2015年3个时期LandsatTM/ETM+/OLI遥感影像数据和研究区附近气象站的气象资料,综合利用"3S"技术和统计分析方法等,研究3个时期研究区内湖泊面积与数量及其变化,从气候要素变化与冰川退缩角度分析其驱动因素。研究结果表明,3个时期研究区冰川补给型湖泊整体呈扩张态势,1995年、2005年和2015年的冰川补给型湖泊面积分别为10700.5km^2、11910.7km^2和12518.3km^2;与1995年相比,2005年的湖泊数量增加了2041个,与2005年相比,2015年的湖泊数量增加了21个;分布在研究区各流域中的冰川补给型湖泊变化状况不同,分布在羌塘高原上的湖泊扩张幅度大,分布在柴达木盆地中的湖泊呈缓慢扩张态势,分布在研究区南部雅鲁藏布江流域中的湖泊相对稳定,还有一些湖泊在萎缩。随着海拔的增加,研究区中的湖泊数量和面积都呈现类似正态分布的特征。1995-2015年期间,冰川退缩和气温上升是导致青藏高原冰川补给型湖泊面积和数量变化的主要原因。
简介:[1]AnZS,WeiLY,LuYC,1985,ApreliminarystudyofsoilstratigraphyinLuochuanloessprofile.QuaternarySciences,6(1):166-173.(inChinese)[2]AnZS,KutzbacchJE,PrellWLetal.,2001.EvolutionofAsianmonsoonsandphasedupliftoftheHimalaya-TibetanplateausinceLateMiocenetimes.Nature,411:62-66.[3]BarbaraAM,1995.PalaeorainfallreconstructionsfrompedogenicmagneticsusceptibilityvariationintheChineseloessandpalaeosol.QuaternaryResearch,44(3):383-391.[4]DerbyshireE,MengXM,KempRA,1998.Provenance,transportandcharacteristicsofmodemaeoliandustinwesternGansuProvince,China,andinterpretationoftheQuaternaryloessrecord.JournalofAridEnvironments,39:497-516.[5]DingZL,LiuDS,LiuXMetal.,1989.37cyclessince2.5Ma.ChineseScienceBulletin,34(19):1494-1496.[6]DingZL,RutterNW,SunJMetal.,2000.Re-arrangementofatmosphericcirculationatabout2.6MaovernorthernChina:evidencefromgrainsizerecordsofloess-palaeosolandredclaysequences.QuaternaryScienceReviews,19:547-558.[7]DuJ,ZhaoJB,2004.SoilerosionregularitysinceHoloceneinShaolingtablelandofChang′an.JournalofDesertResearch,24(1):63-67.(inChinese)[8]FengZD,WangHB,OlsonCetal.,2004.Chronolgicaldiscordbetweenthelastinterglacialpaleosol(S1)anditsparentmaterialintheChineseLoessPlateau.QuaternaryInternational,117:17-26.[9]GuoZT,LiuDS,FedoroffNetal.,1998.ClimateextremesinloessofChinacoupledwiththestrengthofdeep-waterformationintheNorthAtlantic.GlobalandPlanetaryChange,18:113-128.[10]GuoZT,WillamFRuddiman,HaoQZetal.,2002.OnsetofAsiandesertificationby22MyragoinferredfromloessdepositsinChina.Nature,416:159-163.[11]HeinrichH,1988.OriginandconsequenceofcycliciceraftinginthenortheastAtlanticOceanduringpast130000years.QuaternaryResearch,29:142-152.[12]KempRA,DerbyshireE,
简介:Glacierinventorycompilationduringthepast20yearsandmodificationsofthatfortheEasternPamirandBanggongLakeindicatethatthereare46,342modernglacierswithatotalareaandvolumeof59415km2and5601km3respectivelyinChina.Theseglacierscanbeclassifiedintomaritimeandcontinental(includingsub-continentalandextremelycontinental)types.ResearchesshowthatglaciersinChinahavebeenretreatingsincetheLittleIceAgeandthemasswastagewasacceleratedduringthepast30to40years.BeinganimportantpartofglaciologicalstudiesinChina,icecoreclimaticandenvironmentalstudiesonTibetanPlateauandintheAntarcticahaveprovidedabundant,highresolutioninformationaboutpastclimaticandenvironmentalevolutionovertheTibetanPlateauandAntarctica.ExceptfordifferentparametersrecordedinicecoresrelatingtoclimateandenvironmentchangesonTibetanPlateau,recordsfromicecoresextractedfromdifferentglaciersshowthatthediscrepanciesinclimaticandenvironmentalchangesonthenorthandsouthpartsoftheplateaumaybetheconsequenceofdifferentinfluencingeffectsfromterrestrialandsolarsources.GlaciologicalandmeteorologicalphenomenaimplythatLambertGlaciervalleyisanimportantboundaryofclimateintheeastAntarctica,whichisthoughttobeconnectedwithcyclonicactivitiesandCircum-polarWavesovertheAntarctica.
简介:PermafrostinChinaincludeshighlatitudepermafrostinnortheasternChina,alpinepermafrostinnorthwesternChinaandhighplateaupermafrostontheTibetanPlateau.Thehighaltitudepermafrostisabout92%ofthetotalpermafrostareainChina.Thesouthboundaryorlowerlimitoftheseasonallyfrozengroundisdefinedinaccordancewiththe0℃isothermallineofmeanairtemperatureinJanuary,whichisroughlycorrespondingtothelineextendingfromtheQinlingMountainstotheHuaiheRiverintheeastandtothesoutheastboundaryoftheTibetanPlateauinthewest.SeasonalfrozengroundoccursinlargepartsoftheterritoryinnorthernChina,includingNortheast,North,NorthwestChinaandtheTibetanPlateauexceptforpermafrostregions,andaccountingforabout55%ofthelandareaofChina.Thesouthernlimitofshort-termfrozengroundgenerallyswingssouthandnorthalongthe25°northernlatitudeline,occurringinthewetandwarmsubtropicmonsoonclimaticzone.Itsareaislessthan20%ofthelandareaofChina.
简介:中国是一个洪水多发国家,洪水灾害平均每年给中国造成约千亿元的直接经济损失。成功的洪水风险管理离不开公众的参与,了解公众对环境风险的认知是设计有效风险沟通策略的关键,也是促进公众认识提升与行为转变的重要环节。本研究回顾了公众对洪水风险的相关认知,系统梳理了风险认知研究范式、洪水风险认知的测量及其影响因素。现有研究表明,公众居住地的地理特征与洪水风险认知存在显著的相关关系:居住地距离洪水风险源越近,洪水风险认知越高;居住地相对洪水风险源海拔越高,洪水风险认知越低。女性、年龄较高的人群更关注洪水风险,而教育程度、收入水平与洪水风险认知则没有显著相关关系。受灾经历是影响洪水风险认知的重要因素,有过受灾经历的公众会有较高的洪水风险认知和较强的应对灾害的行为。公众对洪水风险管理的信任程度也将影响公众的洪水风险认知。本研究对洪水风险认知的测量指标和测量方法做了梳理和评述,并提出今后洪水风险认知研究可能拓展的方向,如探索公众洪水风险认知对行为改变的作用,以及对洪水风险管理的影响。
简介:植被格局是指植被在生活空间中的位置和布局状况,是物种生物学特性和外界环境因子综合作用的结果。湿地植被在景观上总是沿着某个环境梯度呈较明显的带状分布特点,但是关于带状分布形成的机理目前还不是很清楚。大量事实表明,湿地植被格局不仅受制于湿地自身自然环境状况(包括非生物和生物因素),同时也取决于湿地植物种的生物学特性,并且受到人类干扰活动的影响。具体成因如下:非生物因素主要包括气候、地貌、水文和土壤等,这些因素通过对水、热、光和营养等因子的分配而在不同尺度上影响湿地植被的组成和分布,其中,水位和盐度梯度分别是淡水和盐沼湿地植被格局形成的主导因子。生物因素主要包括竞争和植食作用,高竞争力物种采用迅速繁殖和扩散的策略成为优势物种直接影响植被的分布,植食作用则可能通过改变植物间竞争关系而影响植物分布。物种生物学特性主要包括胁迫忍耐力及繁殖和定居能力等,如洪水忍耐力高的物种往往分布在最高水位的区域,繁殖和定居能力强的物种能使自身在复杂环境下取得竞争优势。人类活动可以通过改变湿地生态系统中的非生物因素和生物因素的相互关系来影响植被分布格局。针对当前研究的现状,今后的研究应在淡水湿地系统植被成因,生物因素如植物间相互作用以及植物自身关系的权衡对格局的影响,微生物作用对植被格局的影响,野外控制实验四个方面进一步加强。
简介:[1]BrownL,1995.WhoWillFeedChina:Wake-upCallforaSmallPlanet.TheWorldWatchEnvironmentalAlertSeries.NortonandCo.,NewYork,USA.[2]CaiYunlong,1990.Land.In:ZuoDakang(eds.),ADictionaryofModernGeography.Beijing:TheCommercialPress,ppl11.(inChinese)[3]CaoM,MaS,HanC,1995.Potentialproductivityandhumancarryingcapacityofanagro-ecosystem:ananalysisoffoodproductionpotentialofChina.AgriculturalSystems,47:387-414.[4]ChenLiding,WangJun,FuBojieetal.,2001.Land-usechangeinasmallcatchmentofnorthernLoessPlateau,China.Agriculture,Ecosystems&Environment,86(2):163-172.[5]DaiFC,LeeCF,ZhangXH,2003.GIS-basedgeo-environmentalevaluationforurbanland-useplanning:acasestudy.EngineeringGeology,61(4):257-271.[6]DingChengri,2003.LandpolicyreforminChina:assessmentandprospects.LandUsePolicy,20:109-120.[7]FuBojie,WangJun,ChenLidingetal.,2003a.TheeffectsoflanduseonsoilmoisturevariationintheDanangoucatchmentoftheLoessPlateau,China.Catena,54:197-213.[8]FuCongbin,2003b.Potentialimpactsofhuman-inducedlandcoverchangeonEastAsiamonsoon.GlobalandPlanetaryChange,37(3-4):219-229.[9]FischerG,SunLaixiang,2001.Modelbasedanalysisoffutureland-usedevelopmentinChina.Agriculture,Ecosystems&Environment,85(1-3):163-176.[10]GuoXiaomin,NiuDekuietal.,2000.TheexplorationofdevelopingfruitindustrymodewithsoilandwaterconservationinsouthJiangxiarea.ResearchofSoilandWaterConservation,7(3):187-218.(inChinese)[11]HeXiubin,LiZhanbin,HaoMingdeetal.,2003.Down-scaleanalysisforwaterscarcityinresponsetosoil-waterconservationonLoessPlateauofChina.Agriculture,EcosystemsandEnvironment,94:355-361.[12]HeiligGK,1999.CanChinafeeditself?Asystemforevaluationofpolicyoptions.ScienceforGlobalInsight,IIASA,Laxenburg(CD-ROMVers.1.1).[13]HuWei,1997.HouseholdlandtenurereforminChina:itsim