简介:利用AERONET(AerosolRoboticNetwork)榆林、北京、香河、兰州四站点的数据分析中国北方大气气溶胶的光学和物理特性。分析内容包括:气溶胶光学厚度、单次散射反照率、复折射指数、散射不对称因子、Αngstrom波长指数、气溶胶体积尺度谱分布。分析结果表明:春季光学厚度为四季中最大;沙尘源区的Αngstrom波长指数和光学厚度的关系较为简单,且随光学厚度的增加呈降低趋势,下游地区Αngstrom波长指数和光学厚度关系较为复杂;所有站点的体积谱分布均呈双峰分布,夏半年积聚态为主模态,冬半年粗模态为主控模态;粗粒子的散射不对称因子大于细粒子的。
简介:利用2007年1月—2010年12月的CloudSat-CALIPSO卫星资料,对中国东部及其周边海域(20°—35°N,103°—137°E)夏季(7—8月)深对流云的云水路径、云水含量、粒子有效半径以及粒子数浓度等微物理变量进行了统计分析,并研究了上述微物理变量的概率密度分布以及垂直变化。结果表明:中国东部夏季深对流云液态水路径可以达到1000g/m^2,海上液态水路径逐渐减小到600g/m^2左右,在海洋上深对流云的冰水路径约为1600g/m^2,而在中国东部冰水路径大约为1200g/m^2;夏季深对流云的液态水含量在47—104mg/cm^3范围内分布概率最大,分布高度在5km左右达到极大值,冰水含量的分布概率单调递减,在7—11km高度的值大于200mg/cm^3;液态水粒子的有效半径在8—13μm的分布概率最大,其有效半径随着高度的增大而逐渐增大,冰粒子有效半径在108μm处分布概率达到最大,最大值出现在5.8km高度处且值为108μm;液态水粒子数浓度在55—65个/cm^3范围内分布概率最大,数浓度极大值出现的高度最大值为4.6km,冰粒子数浓度小于297个/L,在5km高度以上随着高度增加而逐渐增大,到12.3km高度处达到最大。
简介:1.1中国地区地基气溶胶光学-辐射特性的时空分布与变化详细研究了中国地区地基的、高精度、覆盖广泛的月均气容胶光学厚度(AOD)分布及近十几年来的年际变化。研究发现:中国地区气溶胶AOD高值区主要分布在人为活动密集的中东部地区,年均值>0.60;气溶胶粒径大小“自北向南”依次降低,与北方受沙尘气溶胶而南方受二次气溶胶影响有关。远源地区气溶胶载荷略低于全球平均;在沙尘源区和黄土高原气溶胶为全球平均的1.7~2.1倍,而在中国东部郊区及城市区域气溶胶为全球平均的2.7~3.7倍。中国地区AOD自2009年来呈显著增加态势,主要原因可能与环境和气象条件的改变有关。(车慧正)
简介:1大气成分及相关特性变化的观测研究1.12016年12月红色预警的北京冬季重污染事件中边界层内气象要素对PM2.5爆发性增长的相对作用2016年12月至2017年1月PM2.5重污染事件(HPEs)频发,但其中PM2.5质量浓度爆发性增长的成因仍不确定.本研究利用地面PM2.5质量浓度以及风、温、湿等垂直分布的气象要素及ECMWF再分析资料,着重分析边界层内气象要素对此爆发性增长的相对作用.北京HPEs前期以输送为主,后期以累积为主.输送阶段(TS)地面高压位于北京以南,较强偏南风将北京南部的污染物输送至北京促使污染形成.
简介:1.1中国气溶胶遥感网Cimel太阳光度计积分球标定方法的建立参考美国国家标准技术研究院对于积分球标定的方法,建立了中国气溶胶遥感网络(CARSNET)Cimel太阳光度计的积分球标定方法和流程。利用该标定方法和操作流程对4台CE318太阳光度计进行了标定试验。结果显示,与出厂参数相比,本方法获得的可见光波段标定系数相对偏差小于3%,而红外波段相对偏差约5%。太阳等纬圈(ALMUC)和主平面(PPLAN)现场验证实验数据显示,天空散射辐亮度在±6°表现出良好的一致性,所有波长的差异小于1%,表明该标定方法和流程适合CARSNET太阳光度计的校准,并有利于提高数据质量和网络观测的精度。(车慧正)
简介:利用WRF模式的5种云微物理方案对华西地区一次秋雨过程(2011年9月13—20日)进行了模拟,分析不同云微物理方案对华西秋雨的模拟能力,并对降水模拟差异的可能原因进行分析。结果表明:WRF模式的5种云微物理方案对华西秋雨均具有一定的模拟能力,可模拟出华西秋雨的夜雨特征,但Kessler方案模拟的降水落区偏小且降水强度偏弱,而Lin方案模拟的降水强度则偏强;相对来说,Ferrier和WSM3方案对华西秋雨主要降水过程的模拟效果较好。对比WRF模式5种不同云微物理方案对华西秋雨过程的模拟可知,各方案模拟的区域降水强度与WRF模式模拟的上升运动的强弱存在较好的一致性。
简介:为研究华北平原区域背景气溶胶成分及其变化特征,2010年6月至2011年7月在泰山顶采集了64个PM10滤膜样品,分析了样品的PM10及其中无机盐离子和有机碳(OC)、元素碳(EC)的质量浓度,并对各成分相关性等进行了分析.泰山PM10年均质量浓度约为68.4μg/m3,其中无机盐离子约占总质量的64.8%,碳气溶胶约占17.4%.无机盐离子的质量浓度从春季逐渐增大,夏季达到峰值,秋季下降,冬季最小;OC质量浓度从春季至秋季逐渐增高,冬季最低,EC变化类似,但夏秋两季差别不大.二次有机碳(SOC)与OC的比值四季均在50%以上,年均值约为58.5%.通过后向轨迹聚类分析发现,在经过城市的较短轨迹以及南方较短混合轨迹的影响下,泰山PM10质量浓度较高,而西北长距离传输气团PM10浓度均较低.
简介:采集2012年春季和秋季成都城区的PM2.5(空气动力学当量直径小于等于2.5μm的颗粒物,即细颗粒物)样品,分析得到水溶性离子、有机碳(OC)和元素碳(EC)等化学成分。结果表明,春季和秋季PM2.5的浓度分别为101±64μgm^(-3)和88±30μgm^(-3),是环境空气质量标准(GB3095-2012)日均值的1.3倍和1.2倍。基于K^+、OC/EC(OC浓度/EC浓度)和K^+/EC(K^+浓度/EC浓度)指标判别生物质燃烧事件,结果发现春、秋季生物质燃烧期间PM2.5中OC、EC和K^+、Cl^-等成分明显高于非生物质燃烧期;SO_4^(2-)、NH_4^+、Ca^(2+)、Mg^(2+)、NO_3^-、Na^+等其它水溶性离子浓度在生物质燃烧期均有不同程度升高。春、秋季生物质燃烧期间OC浓度分别是非生物质燃烧期的4.2倍和1.8倍,EC为非生物质燃烧期的2.3倍和2.3倍。K^+和Cl^-浓度在春季生物质燃烧期超过平均值的3倍,在秋季生物质燃烧期超过平均浓度的0.8倍和0.9倍。