简介:选取热带测雨卫星(TropicalRainfallMeasuringMission,TRMM)微波成像仪(TRMMMicrowaveImager,TMI)液态水路径(liquidwaterpath,LWP)轨道像元数据为研究对象,探讨了将瞬时探测以及逐月的像元数据进行格点化(0.1°、0.25°、0.5°、1.0°和2.5°五种格点分辨率)时,格点数据的失真情况。对TMI瞬时探测的个例分析结果表明,细分辨率(0.1°、0.25°和0.5°)格点能保留原始像元数据的细节;而随着网格变粗,细节受到较大的平滑。因此对于中尺度到天气尺度的天气系统分析而言,将卫星轨道数据处理到网格尺度不大于0.5°的格点更合适。对逐月LWP像元资料格点化处理的分析表明,细分辨率格点能保留LWP空间分布细节,尽管5种分辨率下LWP的概率密度分布(probabilitydensityfunction,PDF)均相近。因此,对月尺度及以上的气候分析研究而言,格点尺度大小对卫星像元数据格点化的影响不显著。最后利用本实验室计算的TMI/LWP格点数据与欧洲中期数值预报中心再分析资料(EuropeanCentreforMedium-rangeWeatherForecastsInterimreanalysis,ERA-Interim)和NCEP再分析资料(NCEPClimateForecastSystemReanalysis,NCEPCFSR)进行了对比,发现两种再分析资料都高估了LWP;TMI/LWP格点数据与两种再分析资料LWP的多年变化趋势大致相同。
简介:针对2012年7月23日云南腾冲的一次混合型层状云降水过程,联合35GHz多普勒偏振云雷达、雨滴谱仪和探空仪进行联合观测与分析,根据Z—qr(雷达反射率因子—雨水含量)的关系式,反演雨水含量(qr)、云水含量(qc)以及空气垂直速度(w)。结果表明:在较强回波区,云水含量为0.5-0.8g·kg^-1,雨水含量为0.2g·kg^-1,空气垂直速度为0.6-1.0m·s^-1,对应时段的小时雨量较大;通过云水含量与雨水含量、雨水含量与雷达反射率因子的散点图,分别得到各自的拟合公式。当云水含量〈0.8g·kg^-1时,直接通过拟合公式得到的云宏观参量的精度较好。
简介:利用淮南气候环境综合试验站2015年1月云雷达观测资料,对淮南地区冬季云的宏观特征进行了研究。结果表明:(1)淮南地区冬季云云底高度在0.21~11.0km,其中0.5km和2.0km高度云底出现频率最高,分别占全部云系的16.7%和11.3%;云顶分布在0.36~11.3km,其中5.0km和5.5km处云顶出现频率最高,分别占全部云系的9.25%和10.0%。云层厚度为0.1~8.3km,73.4%的云层厚度在2.0km范围内。(2)低云、中云、高云分别占全部云系的44.0%、29.4%和26.6%,平均厚度分别为2.4km、0.8km和0.6km。(3)该地区冬季总云量较少,为13.7%~21.8%。单层云出现频率占总云量的45.2%~77.8%,多层云出现频率随着层数的增加而减小。
简介:利用2001~2016年MODIS月平均液相云水路径(CloudLiquidWaterPath,LWP)、冰相云水路径(CloudIceWaterPath,IWP)资料和ERA-Interim再分析等资料,分析了青藏高原空中云水的分布特征、变化趋势以及与大气环流变化和水汽输送变化的关系。结果显示,LWP和IWP的年平均分布形态与降水、可降水量对应较好,林芝地区聚集了丰富的LWP、IWP、降水量和可降水量。受印度洋季风影响,LWP和IWP存在明显的季节变化,夏季LWP和IWP最丰富,冬季最少。水汽传输和高原的动力、热力作用是影响夏季LWP和IWP分布的主要因素,夏季高原南部相对湿度大,水汽抬升强烈,促进了LWP和IWP的形成和积累。LWP和IWP随海拔高度的变化特征较为相似,3000~5500m海拔高度区间内二者的总体变化特征与青藏高原降水的梯度变化特征一致,为随高度先较快升高后保持稳定的分布特征。青藏高原年平均和季节平均LWP和IWP在2001~2016年间均以减少趋势为主,这一变化趋势与云量和降水变化趋势一致,LWP和IWP的减少趋势与水汽输送通量散度的增加密切相关。