简介:地震波场正演模拟是地震资料处理、解释中最为重要的技术之一。地震波场正演模拟在大时间步长、长时程的波场延拓中,存在计算不稳定的问题。本文基于声波方程的Hamilton表述,在波动方程求解中用辛差分格式进行时间网格离散,用傅里叶有限差分进行空间网格离散,提出一种新的保结构地震波场正演模拟方法一辛格式傅里叶有限差分法,在保证计算精度的同时提高计算的稳定性。利用声学近似处理空间-波数混合域的积分算子,将该方法推广至各向异性介质。给出各向同性和各向异性条件下的地震正演模拟的计算流程,并将本文方法用于BP盐丘、BPTTI等模型的波场正演模拟。数值算例表明本文开发的方法适用于速度变化剧烈的复杂介质地震波场正演模拟,计算精度高,数值频散小,在各向异性介质正演中能够有效避免qSV波残余,在大时间步长的迭代计算中稳定性好。本文为在辛算法的框架下实现高精度地震正演模拟提供了一种新的选择。
简介:频率空间域地震波数值模拟具有独特的优势:可以同时模拟多源的波传播、每个频率之间独立并行地计算、计算频带选择灵活、不存在累计误差、容易模拟粘弹性介质中地震波传播。但是该方法的最大瓶颈是对于计算机内存的巨大需求。我们使用压缩存储系数矩阵的方法,极大地减少了计算机内存的需求量。同时为了减少短差分算子的数值频散,引用了频率空间域25点弹性波波动方程的差分格式,并使用了最小二乘意义下求出的优化差分系数。为了克服边界反射,采用了最佳匹配层吸收边界条件。数值模拟试验证明:用压缩存储系数矩阵及优化差分系数的频率空间域25点差分格式进行弹性波正演模拟,可以减少数值频散,提高计算精度。使用较大的网格间距,降低计算机内存需求,并保持较高的计算效率。该正演方法为后续弹性波偏移和弹性参数反演提供较好的基础。