学科分类
/ 1
1 个结果
  • 简介:摘要机器学习(ML)、人工智能(AI)和其他现代统计方法正为利用先前尚未开发且极速增长的数据资源提供新的机会,以期让患者获益。尽管目前正在进行许多有前景的研究,特别是在图像方面,但就文献整体而言还缺乏透明度、对可重复清晰的阐述、对潜在伦理问题的探究,以及对有效性的明确验证。这些问题的存在有许多原因,其中最重要的一点(为此我们提供了初步解决方案)就是当前缺乏针对ML和AI的最佳实践指南。我们认为从事研究的跨学科团队和应用ML/AI影响健康的项目,将因解决有关透明度、可重复、伦理和有效性(TREE)的一系列问题而受益。这里提出的20个关键问题为研究团队提供了一个研究设计、实施和报告框架;帮助编辑和同行评审专家评估文献的贡献;让患者、临床医生和政策制定者评估新发现可能会给患者带来的获益。

  • 标签: