学科分类
/ 1
3 个结果
  • 简介:利用非线性增生映射值域的扰动定理,研究了非线性椭圆边值问题(@)在Ls(Ω),p≤s<+∞中解的存在性.(@){-△pu+g(x,u)=fa.e.在Ω中-∈βr(u(x))a.e.在Γ上其中f∈Ls(Ω),p≤s<+∞给定,ΩRN为有界锥形区域,△pμ=div(|u|p-2u)为P拉普拉斯算子.max(N,2)≤p<+∞,v为Γ的外法向导数,g:Ω×R→R满足Caratheodory条件,对x∈Γ,βx是正常、凸、下半连续函数φx=φ(x,@)的次微分.其中φ:Γ×R→R.本文推广了魏利和何震所讨论的非线性问题的边值条件.

  • 标签: 增生映射 半连续映射 非线性椭圆边值问题
  • 简介:受非线性增生映射值域的扰动定理的启发,研究了非线性边值问题(@)在L^p(Ω),1<p<+∞中解的存在性。(@){-∑^Ni,j=1σ/σxi(ai,jσu/σxj)+∑^Ni=1bσu/σxi+g(x,u)=fa.e.inΩ,-σu/σna∈βx(u(x))a.e.onΓ其中f∈L^p(Ω),1<p<+∞给定,g:Ω×R→满足Caratheodory条件。本文把Gupta和Hass所研究的非线性方程加以推广,即在方程中增加了∑^Ni=1bσu/σxi这一项,并把解的存在性的讨论由L^2(Ω)空间推广到L^p(Ω),1<p<+∞空间中。

  • 标签: 增生映射 非线性方程 椭圆边值问题 存在性
  • 简介:利用非线性增生映射值域的扰动定理,研究了非线性椭圆边值问题(1)在Ls(Ω)空间中解的存在性,其中max(N,2)≤p≤s<+∞.(1){-div{(C(x)+|▽u|2)p-2/2▽u}+|u|p-2u+g(x,u(x))=fa.e.x∈Ω-〈n,(C(x)+|▽u|2)p-2/2▽u〉∈βx(u(x))a.e.x∈Γ这里f∈Ls(Ω)给定,Ω()RN为有界锥形区域,n为Γ的外法向导数,g:Ω×R→R满足Caratheodory条件且对()x∈Γ,βx是正常、凸、下半连续函数ψx=ψ(x,·)的次微分,其中ψ:Γ×R→R.本文是对笔者以往一些工作的继续和补充.

  • 标签: 增生映射 demi连续映射 P-LAPLACE算子