简介:设X是一致光滑的Banach空间,T:D(T)属于X→2^x是局部严格伪压缩映射且有不动点.设Q是从X到D(T)上的非扩张保核映射.任取x0∈D(T)归纳定义:xn+1=Qpл,pn∈(1-cn)xn+cnTQyn,yn∈(1-dn)xn+dnTxn.如果存在有界序列{wn}和{zn},wn∈TQyn,zn∈Txn.则{xn}强收敛于T的唯一不动点.其中数列{cn}和{dn}满足适当条件.
简介:设E是Banach空间,T:E→2^E*是极大单调算子,T^-10≠Ф.令x0∈E,yn=(J+λnT)^-1xn+en,xn+1=J^-1(anJxn+(1-an)Jyn)n≥0,λn〉0,an∈[0,1],文章研究了{xn}收敛性.