简介:通过对局部凸空间上凸函数可微性的讨论,首先建立了关于凸函数β可微性的特征定理;定义在局部凸空间E的非空开凸子集D上的每个连续凸函数f均在D的一个稠密的子集上β-可微(也称E具有β-LP性质)的充分必要条件为其对偶E“中的每个w~*紧凸子集均是自己w~*一β暴露点的w~* 闭凸包;然后进一步证明了E~*上的w~*一β扰动优化定理成立,即定义在E~*的每个有界w~*闭集A~*上的w 下半连续有下界的函数g以及每个ε >0均存在x0 A及x E满足使得(g+x)(x )=infA (g+x)且{xi } A ,(g+x)(xi )→infA (g+x)推出xi -xo ,当且仅当E具有β-LP性质.