简介:摘要目的开发一种基于预测剂量的自调节调强放射治疗自动计划方法,以增强自动计划的鲁棒性。方法利用3D U-Res-Net_B网络预测出三维剂量分布后,在直接子野优化的每次迭代中先基于上次迭代结果计算当前剂量,再联合预测剂量计算目标剂量,然后以此为目标进行优化。完成所有迭代或满足循环退出条件后,得到最终的治疗计划。在30例直肠癌病例上进行测试,验证算法的效果。结果临床计划治疗靶区的V100%均值和标准差为(95.03±0.91)%,自动计划为(94.67±1.96)%,接近临床值(P>0.05),而预测值为(92.90±2.13)%,与临床计划的差异具有统计学意义(t=29.0,P<0.05);自动计划在小肠V35、膀胱V40、股骨头的V20 ~V40等多项指标上低于预测值和临床值,且差异具有统计学意义(t=4.5~118.0,P<0.05),在其他危及器官的指标上与临床值的差异无统计学意义(P>0.05)。结论本方法增强了自动计划的鲁棒性,提高了其应对复杂情况的能力。