学科分类
/ 1
1 个结果
  • 简介:Inthenormaloperationcondition,aconventionalsquare-rootcubatureKalmanfilter(SRCKF)givessufficientlygoodestimationresults.However,ifthemeasurementsarenotreliable,theSRCKFmaygiveinaccurateresultsanddivergesbytime.ThisstudyintroducesanadaptiveSRCKFalgorithmwiththefiltergaincorrectionforthecaseofmeasurementmalfunctions.Byproposingaswitchingcriterion,anoptimalfilterisselectedfromtheadaptiveandconventionalSRCKFaccordingtothemeasurementquality.Asubsystemsoftfaultdetectionalgorithmisbuiltwiththefilterresidual.Utilizingaclearsubsystemfaultcoefficient,thefaultysubsystemisisolatedasaresultofthesystemreconstruction.Inordertoimprovetheperformanceofthemulti-sensorsystem,ahybridfusionalgorithmispresentedbasedontheadaptiveSRCKF.Thestateanderrorcovariancematrixarealsopredictedbythepriorifusionestimates,andareupdatedbythepredictedandestimatedinformationofsubsystems.Theproposedalgorithmswereappliedtothevesseldynamicpositioningsystemsimulation.TheywerecomparedwithnormalSRCKFandlocalestimationweightedfusionalgorithm.ThesimulationresultsshowthatthepresentedadaptiveSRCKFimprovestherobustnessofsubsystemfiltering,andthehybridfusionalgorithmhasthebetterperformance.Thesimulationverifiestheeffectivenessoftheproposedalgorithms.

  • 标签: hybrid fusion algorithm square-root CUBATURE KALMAN