简介:提出了一种免疫遗传算法(MOGA)用来解决多目标优化问题。在该算法(MOGA)中,使用了高斯变异算子,提高了收敛速度;创建了记忆细胞集来保存每代所产生的Pareto最优解。此算法与NSGAⅡ算法进行模拟实验结果进行对比,通过比较发现,该算法无论是在个体的多样性还是收敛性上都要比NSGAⅡ算法好,表明免疫遗传算法在解决多目标优化问题上具有可观的研究前景。
基于免疫遗传的多目标优化