简介:Multipaction,causedbythesecondaryelectronemissionphenomenon,hasbeenachallengeinspaceapplicationsduetotheresultingdegradationofsystemperformanceaswellasthereductionintheservicelifeofhighpowercomponents.Inthispaperwereportanovelapproachtorealizeaneffectiveincreaseinthemultipactionthresholdbyemployingmicro-poroussurfaces.Twomicro-porousstructures,i.e.,aregularmicro-porousarrayfabricatedbyphotolithographypatternprocessingandanirregularmicro-porousarrayfabricatedbyadirectchemicaletchingtechnique,areproposedforsuppressingthesecondaryelectronyield(SEY)andmultipactionincomponents,andthebenefitsarevalidatedboththeoreticallyandexperimentally.Thesesurfaceprocessingtechnologiesarecompatiblewiththemetalplatingprocess,andoffersubstantialflexibilityandaccuracyintopologydesign.Thesuppressioneffectisquantifiedforthefirsttimethroughtheproperfittingofthesurfacemorphologyandthecorrespondingsecondaryemissionproperties.Insertionlosseswhenusingthesestructuresdecreasedramaticallycomparedwithregularmillimeter-scalestructuresonhighpowerdielectricwindows.SEYtestsonsamplesshowthatthemaximumyieldofAg-platedsamplesisreducedfrom2.17to1.58fordirectlychemicaletchedsamples.MultipactiontestingofactualC-bandimpedancetransformersshowsthatthedischargethresholdsoftheprocessedcomponentsincreasefrom2100Wto5500Wforphotolithographypatternprocessingand7200Wfordirectchemicaletching,respectively.Insertionlossesincreasefrom0.13dBtoonly0.15dBforbothsurfacetreatmentsinthetransmissionband.Theexperimentalresultsagreewellwiththesimulationresults,whichoffersgreatpotentialinthequantitativeanti-multipactiondesignofhighpowermicrowavecomponentsforspaceapplications.