简介:研究了时间窗口对基于10种用户相似性指标的个性化推荐算法的影响。在标准数据集MovieLens上的实验结果表明,只采用大约12.56%的用户近期历史记录,所得到的推荐结果准确性可以平均提高27.17%,而推荐列表多样性可以平均提高3.28%,极大地降低大规模数据所带来的计算复杂性问题。
时间窗口对个性化推荐算法的影响研究