简介:通过选择适当的Banach空间并利用Leray-Schauder非线性抉择对于含各阶导数的非线性弹性梁方程u(4)(t)=f(t,u(t),u′(t),u″(t),u(t)),0t1,u(0)=u′(1)=u″(0)=u(''')(1)=0.建立了一个解的存在定理.在材料力学中,该方程描述了一端简单支撑,另一端被滑动夹子夹住的弹性梁的形变.这个存在定理说明只要非线性项满足某种线性增长条件该方程至少有一个解.
简介:通过使用Hammastein积分方程和锥上的不动点定理对于一类含时间奇异性的二阶非线性Dirich.1et问题建立了三个局部存在定理.主要结论表明只要非线性项的主要部分在某些有界集合上的高度是适当的此问题具有n个正解,其中竹是一个任意的自然数.
含各阶导数的非线性弹性梁方程的一个存在定理
一类含时间奇异性的二阶非线性Dirichlet问题的正解